proof
let $1^{st}$ term be p and difference d. Let a be $q^{th}$, b be $r^{th}$, c be $s^{th}$
so $a = p+(q-1)t$
$b= p+(r-1)t$
$c= p + (s-1)t$
hence $b-c = (r-s)t$
and $a-b = (q-r)t$
or $\frac{b-c}{a-b} = \frac{q-r}{r-s}$
as $q,r,s$ are intgers rhs is rational and hence the result
No comments:
Post a Comment