Loading [MathJax]/extensions/TeX/mathchoice.js

Monday, August 29, 2016

2016/080)Find the coefficient x^3 in 1+ (1+x) + (1+x)^2 + (1+x)^3\cdots(1+x)^n

we have 1+ (1+x) + (1+x)^2 + (1+x)^3\cdots(1+x)^n= \frac{(1+x)^{n+1} -1 }{1+x-1}
= \frac{(1+x)^{n+1} -1 }{x}
so coeffient x^3 in 1+ (1+x) + (1+x)^2 + (1+x)^3\cdots(1+x)^n is coefficient of x^4 in (1+x)^{n+1} -1
or {n+1 \choose 4}

No comments: