some short and selected math problems of different levels in random order I try to keep the ans simple
Monday, August 29, 2016
2016/080)Find the coefficient x^3 in 1+ (1+x) + (1+x)^2 + (1+x)^3\cdots(1+x)^n
we have 1+ (1+x) + (1+x)^2 + (1+x)^3\cdots(1+x)^n= \frac{(1+x)^{n+1} -1 }{1+x-1} = \frac{(1+x)^{n+1} -1 }{x}
so coeffient x^3 in 1+ (1+x) + (1+x)^2 + (1+x)^3\cdots(1+x)^n is coefficient of x^4 in (1+x)^{n+1} -1
or {n+1 \choose 4}
No comments:
Post a Comment