Loading web-font TeX/Math/Italic

Friday, August 19, 2016

2016/075) derive the following given u_n the n^{th} fibonacci number u_{n+1}^2 - 4u_nu_{n-1} = u_{n-2}^2

we have
u_{n+1}^2 -  u_{n-2}^2
= (u_n + u_{n-1})^2 -  (u_n - u_{n-1})^2
=4u_nu_{n-1} using (a+b)^2 - (a-b)^2 = 4ab
hence u_{n+1}^2 - 4u_nu_{n-1} = u_{n-2}^2

No comments: