we have
\cos(p\sin\, x) = \sin (p\cos\,x)= \cos (\frac{\pi}{2} - p\cos\,x)
hence
p\sin \,x = \frac{\pi}{2} - p \cos \,x (other values shall given -ve / larger p)
hence
p(\cos \, x + \sin\, x) = \frac{\pi}{2}
or \sqrt{2}p( \sin \frac{\pi}{4} \cos \, x + \cos \frac{\pi}{4} \sin \, x) = \frac{\pi}{2}
or \sqrt{2}p( \sin ( x + \frac{\pi}{4}) = \frac{\pi}{2}
the largest value of \sin ( x + \frac{\pi}{4}) is 1 hence smallest p is \frac{\pi}{2\sqrt{2}}
No comments:
Post a Comment