we have
$x=\dfrac{4ab}{a+b}$
hence $\dfrac{x}{2a} = \dfrac{2b}{a+b}$
using componendo dividendo we get
$\dfrac{x+ 2a}{x- 2a} = \dfrac{2b + (a +b) }{2b - (a+b) } = \dfrac{3b + a }{b- a}\cdots(1)$
similarly $\dfrac{x+ 2b}{x- 2b} = \dfrac{2a + (a +b) }{2a - (a+b) } = \dfrac{3a + b}{a-b}\cdots(2)$
Adding (1) and (2) we get
$\dfrac{x+2a}{x-2a}+ \dfrac{x+2b}{x-2b} = \dfrac{3b + a}{b- a} + \dfrac{3a + b}{a- b} $
$= \dfrac{3b + a}{b- a} - \dfrac{3a + b}{b-a}$
$= \dfrac{3b + a-3a -b}{b- a} = \dfrac{2b-2a}{b-a} = \dfrac{2(b-a)}{b-a} = 2$
No comments:
Post a Comment