We have (a+c+d) = - (b+e+f)\cdots(1)
and a^3+c^3+d^3= -(b^3+e^3+f^3)\cdots(2)
cube both sides of (1) using (x+y+z)^3 = x^3+y^3+z^3 + 3(x+y)(y+z)(z+x) to get
a^3+c^3+ d^3 + 3(a+c)(a+d)(d+c) = -(b^3 + e^3 + f^3 + 3(b+e)(b+f)(e+f)
or (a+c)(a+d)(c+d) = - (b+e)(b+f)(e+f)\cdots(3) using (2)
similarly we have (a+e)(a+f)(e+f) = - (b+c)(b+d)(c+d)\cdots(4)
multiplying (3) and (4) we get the result
No comments:
Post a Comment