$a,b,c$ are in HP
hence $\frac{1}{a} + \frac{1}{c} = \frac{2}{b}$
cube both sides to get $\frac{1}{a^3} + \frac{1}{c^3} + 3 \frac{1}{a} \frac{1}{c}(\frac{1}{a} + \frac{1}{c}) = \frac{8}{b^3}$
or $\frac{1}{a^3} + \frac{1}{c^3} + 3 \frac{1}{a} \frac{1}{c}\frac{2}{b} = \frac{8}{b^3}$
or $\frac{1}{a^3} + \frac{1}{c^3} + \frac{1}{b^3} = \frac{9}{b^3} - 3 \frac{1}{a} \frac{1}{c}\frac{2}{b}$
multiply both sides by $a^3b^3c^3$ to get
$b^3c^3 + a^3b^3 + a^3c^3 = 9a^3c^3 - 6 a^2b^2c^2 = (9aac-6b^2) a^2c^2$
No comments:
Post a Comment