Because P(x) devides x^4 + 6x^2 + 25 and 3x^4+ 4x^2 + 28x + 5 hence P(x) devides the GCD,
now GCD(x^4 + 6x^2 + 25,3x^4+ 4x^2 + 28x + 5
= GCD(x^4 + 6x^2 + 25,3x^4+ 4x^2 + 28x + 5 - 3( x^4 + 6x^2 + 25))
= GCD(x^4 + 6x^2 + 25, -14x^2 + 28x -70))
= GCD(x^4 + 6x^2 + 25, x^2 -2x+5)) deviding 2nd expression by -14
= GCD(x^4 + 10x^2 + 25- 4x^2, x^2-2x + 5)
= GCD((x^2 + 5)^2- (2x)^2, x^2-2x + 5)
=GCD((x^2+2x+5)(x^2-2x+5),x^2-2x + 5)
=x^2 - 2x + 5
so as p(x) is of the form x^2+bx+ c so p(x) = x^2 - 2x+5 and hence p(1) = 4
No comments:
Post a Comment