Processing math: 100%

Sunday, April 4, 2021

2021/019) If A = \log_{12} 18 and B = \log_{(24)}54 then evaluate, AB + 5(A - B)?

We have

A = \frac{\log18}{\log12} = \frac{log\,2 + 2\log\,3}{2\log\, 2 + \log\, 3}

A = \frac{\log 54}{\log 24} = \frac{log\,2 + 3\log\,3}{3\log\, 2 + \log\, 3}

putting x=\log\, 2 and y=\log\,3 we get

A= \frac{x+2y}{2x+y}

and B= \frac{x+3y}{3x+y}


So 

AB + 5(A - B)

= \frac{(x+2y)(x+3y)}{(2x+y)(3x+y)} + 5(\frac{(x+2y)(3x+y) - (2x+y)(x+3y)}{ (2x+y)(3x+y)})

= \frac{[(x^2+5xy+6y^2) + 5(x^2 - y^2)]}{ (2x+y)(3x+y)}

= \frac{6x^2 + 5xy + y^2}{x^2 + 5xy + y^2} =1

.

No comments: