We have
$A = \frac{\log18}{\log12} = \frac{log\,2 + 2\log\,3}{2\log\, 2 + \log\, 3}$
$A = \frac{\log 54}{\log 24} = \frac{log\,2 + 3\log\,3}{3\log\, 2 + \log\, 3}$
putting $x=\log\, 2$ and $y=\log\,3$ we get
$A= \frac{x+2y}{2x+y}$
and $B= \frac{x+3y}{3x+y}$
So
AB + 5(A - B)
= $\frac{(x+2y)(x+3y)}{(2x+y)(3x+y)} + 5(\frac{(x+2y)(3x+y) - (2x+y)(x+3y)}{ (2x+y)(3x+y)})$
= $\frac{[(x^2+5xy+6y^2) + 5(x^2 - y^2)]}{ (2x+y)(3x+y)}$
= $\frac{6x^2 + 5xy + y^2}{x^2 + 5xy + y^2} =1 $
.
No comments:
Post a Comment