We have (given)
$x+y+z=0 \cdots(1)$
$xy+yz+zx=-3\cdots(2)$
From (1)
$(x+y+z)^2 = x^2 + y^2 + z^2 + 2(xy +yz + zx) = 0$
or $x^2 + y^2 + z^2 + 2(-3) = 0$
or $x^2 + y^2 + z^2 = 6\cdots(3)$
Further from (1)
$x+y = -z\cdots(4)$
$y+z = -x\cdots(5)$
$z+x = -y\cdots(6)$
Now let us prove that
$x^3y+ y^3 z + z^3 x = xy^3 + yz^3 + zx^3\cdots(7)$
to prove the same
$x^3y+ y^3 z + z^3 x - (xy^3 + yz^3 + zx^3)$
$= (x^3y - xy^3) + (y^3z - yz^3) + (z^3 x - zx^3)$
$= xy(x^2 - y^2) + yz(y^2 - z^2) + zx(z^2 - x^2)$
$=xy(x+y)(x-y) + yz(y+z)( y-z) + zx(z+x)(z-x)$
$=xy(-z)(x-y) + yz(-x) (y-z) + xz(-y) (z-x)$ using (4), (5), (6)
$= - xyz(x-y) - xyz(y-z) - xyz(z-x)$
= 0
so (7) is true
Now $(x^2 + y^2 + z^2)(xy + yz + zx) = 6 * (-3) $ putting values from above
Or $x^3y + x^2yz + zx^3 + xy^3 + y^3 z + y^2zx + z^2yx + yz^3 + z^3 x = 18$
or $(x^3y + y^3 z + z^3x) + (xy^3 + yz^3 + zx^3 ) + (x^2yz + xy^2z + xyz^2) = - 18$
or $(x^3y + y^3 z + z^3x) + (x^3y + y^3z + z^3x ) + (x^2yz + xy^2z + xyz^2) = - 18$ (from (7)
or $2(x^3y + y^3 z + z^3x) + xyz(x+y+z) = - 18$
or $2(x^3y + y^3 z + z^3x) + xyz. 0 = - 18$ from (1)
or $2(x^3y + y^3 z + z^3x)= - 18$ from (1)
or $(x^3y + y^3 z + z^3x) = - 9$
Which is a constant
Hence proved
No comments:
Post a Comment