Let $\lfloor x \rfloor = n$
So we have $ n \le x < n+1$
So
$ nx \le \lfloor x \lfloor x \rfloor \rfloor < x(n+1) $
Ss $n^2 \ le nx $ and $(n+1)^2 > x(n+1)$ we have
$ n^2 \le \lfloor x \lfloor x \rfloor \rfloor < (n+1)^2 $
Or
$ n^2 \le 10 < (n+1)^2 $
And $ 10 \le nx < 11$
Or n= 3 and putting n = 3 we have $\frac{10}{3} \le x < \frac{11}{3}$
No comments:
Post a Comment