We have $a^3+b^3+c^3=3abc$ so a=b=c or a+b+c = 0
As a,b,c are different so a+b + c = 0
Hence
$\frac{(b+c)^2}{3bc}= \frac{(-a)^2}{3bc}=\frac{a^3}{3abc}$
Similarly we have
$\frac{(c+a)^2}{3ac}= \frac{b^3}{3abc}$
$\frac{(a+b)^2}{3ab}= \frac{c^3}{3abc}$
Adding these 3 we get
$\frac{(b+c)^2}{3bc} + \frac{(c+a)^2}{3ac}+\frac{(a+b)^2}{3ab}= \frac{a^3+b^3+c^3}{3abc} = \frac{3abc}{3abc}=1$
No comments:
Post a Comment