Processing math: 9%

Sunday, April 25, 2021

2021/024) if a^3+b^3+c^3=3abc and a,b, c are different then prove that \frac{(b+c)^2}{3bc} + \frac{(c+a)^2}{3ac}+\frac{(a+b)2}{3ab}=1

We have a^3+b^3+c^3=3abc so a=b=c or a+b+c = 0

As a,b,c are different so a+b + c = 0

Hence

\frac{(b+c)^2}{3bc}= \frac{(-a)^2}{3bc}=\frac{a^3}{3abc}

Similarly we have 

\frac{(c+a)^2}{3ac}= \frac{b^3}{3abc}

\frac{(a+b)^2}{3ab}= \frac{c^3}{3abc} 

Adding these 3 we get

\frac{(b+c)^2}{3bc} + \frac{(c+a)^2}{3ac}+\frac{(a+b)^2}{3ab}= \frac{a^3+b^3+c^3}{3abc} = \frac{3abc}{3abc}=1

 

No comments: