let the prime be p
we have 2019^8 \equiv -1 \pmod p
or 2019^{16} \equiv 1 \pmod p
so 2019^{16k} \equiv 1 \pmod p
as per Formats Little theorem p shall be of the form 16k + 1.
any number less than 16 is not possible because 2019^8 \equiv -1 \pmod p and 16=2^4 and 8=2^3 so any factor of 16 shall not give a power =1.
so p = 16 *2 + 1 = 33 (not a prime) or 16 * 3 + 1= 49( not a prime) or 16 * 4 + 1 = 65( not a prime) or 16 * 5 + 1 = 81 (not a prime) or 16 *6 + 1 = 97.
so we check for 97
now 2019 \equiv - 18 \pmod {97}
so 2019^2 \equiv 324 \pmod {97}
or 2019^2 \equiv 33 \pmod {97}
so 2019^4 \equiv 33^2 \pmod {97}
or 2019^4 \equiv 22 \pmod {97}
or 2019^8 \equiv 484 \pmod {97}
or 2019^8 \equiv -1 \pmod {97}
or or 2019^8 + 1\equiv 0 \pmod {97}
so smallest prime factor = 97
No comments:
Post a Comment