let the prime be p
we have $2019^8 \equiv -1 \pmod p$
or $2019^{16} \equiv 1 \pmod p$
so $2019^{16k} \equiv 1 \pmod p$
as per Formats Little theorem p shall be of the form 16k + 1.
any number less than 16 is not possible because $2019^8 \equiv -1 \pmod p$ and $16=2^4$ and $8=2^3$ so any factor of 16 shall not give a power =1.
so p = 16 *2 + 1 = 33 (not a prime) or 16 * 3 + 1= 49( not a prime) or 16 * 4 + 1 = 65( not a prime) or 16 * 5 + 1 = 81 (not a prime) or 16 *6 + 1 = 97.
so we check for 97
now $2019 \equiv - 18 \pmod {97}$
so $2019^2 \equiv 324 \pmod {97}$
or $2019^2 \equiv 33 \pmod {97}$
so $2019^4 \equiv 33^2 \pmod {97}$
or $2019^4 \equiv 22 \pmod {97}$
or $2019^8 \equiv 484 \pmod {97}$
or $2019^8 \equiv -1 \pmod {97}$
or or $2019^8 + 1\equiv 0 \pmod {97}$
so smallest prime factor = 97
No comments:
Post a Comment