a,b,c are in HP so $\frac{1}{a}$, \frac{1}{b}$, $\frac{1}{c}$ are in AP
or $\frac{1}{b} - \frac{1}{a} = \frac{1}{c} - \frac{1}{b}$
multiply both LHS and RHS by a + b + c we get
$\frac{a+b+c}{b} - \frac{a+b+c}{a} = \frac{a+b+c}{c} - \frac{a+b+c}{b}$
Or
$(\frac{a+b+c}{b} - 2) - (\frac{a+b+c}{a}-2) = (\frac{a+b+c}{c} -2) - (\frac{a+b+c}{b} -2) $
or $(\frac{a+c-b }{b}) - (\frac{b+c-a }{a}) = (\frac{a+b-c }{c}) - (\frac{c + a - b}{b} $)
Hence $\frac{b+c-a}{a}$, $\frac{c+a-b}{b}$, $\frac{a+b-c}{c}$ are in A.P
No comments:
Post a Comment