From the given condition we have
$(x-3) = \sqrt[3]3 + \sqrt[3]{3^2}$
squaring both sides
$(x-3)^3 = (\sqrt[3]3)^3 + ( \sqrt[3]{3^2})^2 + 3 \sqrt[3]{3} \sqrt[3]{3^2}( \sqrt[3]{3} + \sqrt[3]{3^2})$ using $(a+b)^3 = a ^3 + b^3 + 3ab(a+)$
or $(x-3)^3 = 3 + 9 + 9 ( x-3)$ using $( \sqrt[3]{3^2} + \sqrt[3]{3^2} = x- 3$
or $(x^3 - 9x^2 + 27 x - 27 = 12 + 9x - 27 = 9x + 12$
or $x^3 - 9x^2+ 18x -12 = 0$
No comments:
Post a Comment