Processing math: 4%

Sunday, May 14, 2023

2023/021) Find the sum of the series 1+5+10+16+23\cdots

 Let us have a look at the t^{th} term. 

Let us look at difference for a couple of terms

t_2 = t_1 = 5- 1 = 4

t_3-t_2 = 10 -5 = 5

t_4-t_3 = 16 -10 = 6

From the above we see that t_k = t_{k-1} + k + 2

From this let us find t_n  in terms of n

We have t_n = 1 + \sum_{k=2}^{n} (k + 2)

= 1 + \frac{n(n+1)}{2} - 1 + 2(n-1)

= \frac{n^2}{2} + \frac{5n }{2} - 2

So sum S_n = \sum_{k=1}^n (\frac{k^2}{2} + \frac{5k }{2} - 2)

= \sum_{k=1}^n (\frac{k^2}{2}) + \sum_{k=1}^n\frac{5k }{2} - \sum_{k=1}^n2

=\frac{1}{2}(\frac{n(n+1)(2n+1)}{6}  + \frac{5}{2} \frac{n(n+1)}{2} - 2n

= \frac{2n^3 + 3n^2 +n }{12} + \frac{5n^2 +5n}{4} - 2n

= \frac{2n^3 + 3n^2 + n + 15n^2 + 15n -24n}{12}

= \frac{2n^3 + 18n^2 -8n}{12}

= \frac{n^3 + 9n^2 -4n}{6}



 

 

 

No comments: