We shall prove it by taking the GCD
$GCD((n+1)!+1, n!+1)$
$= GCD((n+1)!+1- (n!+1), n!+1)$ using GCD(a,b) = GCD(a-mb,b) for any integer m
$= GCD((n+1)!- n!, n!+1)$
$= GCD((n!(n+1-1), n!+1)$
$= GCD(n!.n, n!+1)$
$= GCD(n!, n!+1)$ we can devide 1st term by n and GCD shall not change and 2nd term is not divisible by n
$= GCD( n!, n!+1-n)$ using GCD(a,b) = GCD(a-mb,b) for any integer m
$=GCD(n!,1)= 1$
So these are relativvly primes
No comments:
Post a Comment