Processing math: 100%

Saturday, May 20, 2023

2023/025) GIven a+b+c = 0 Find the value of \frac{ab}{a^2+ab+b^2} + \frac{bc}{b^2 + bc+c^2} + \frac{ca}{c^2 + ca + b^2}

We have a+b+c = 0

Hence a+ b = -c

Squaring both sides a^2+2ab + b^2 = c^2

Adding  a^2+b^2 on both sides we get

2(a^2+ab+b^2) = a^2 + b^2 + c^2

Or a^2+ab + b^2 = \frac{1}{2}(a^2+b^2+c^2)

So \frac{ab}{a^2+ab + b^2} = \frac{2ab}{a^2+b^2+c^2}\cdots(1)

Similarly we have  \frac{bc}{b^2+bc + c^2} = \frac{2bc}{a^2+b^2+c^2}\cdots(2)

And \frac{ca}{c^2+ca + a^2} = \frac{2ca}{a^2+b^2+c^2}\cdots(3)

Adding (1) (2) and (3) we get

\frac{ab}{a^2+ab+b^2} + \frac{bc}{b^2 + bc+c^2} + \frac{ca}{c^2 + ca + b^2}= \frac{2ab+2bc+2ca}{a^2+b^2+c^2}\cdots(4)

Now staring with a+b+c=0 squaring both sides we get

a^2+b^2+c^2 + 2ab + 2bc+2ca= 0

Or a^2+b^2 + c^2 = - (2ab+2bc+2ca)

Or \frac{2ab+2bc+2ca}{a^2 +b^2+ c^2} = -1\cdots(5)

Form (4) and (5) we get \frac{ab}{a^2+ab+b^2} + \frac{bc}{b^2 + bc+c^2} + \frac{ca}{c^2 + ca + b^2}= - 1


No comments: