We have a+b+c = 0
Hence a+ b = -c
Squaring both sides a^2+2ab + b^2 = c^2
Adding a^2+b^2 on both sides we get
2(a^2+ab+b^2) = a^2 + b^2 + c^2
Or a^2+ab + b^2 = \frac{1}{2}(a^2+b^2+c^2)
So \frac{ab}{a^2+ab + b^2} = \frac{2ab}{a^2+b^2+c^2}\cdots(1)
Similarly we have \frac{bc}{b^2+bc + c^2} = \frac{2bc}{a^2+b^2+c^2}\cdots(2)
And \frac{ca}{c^2+ca + a^2} = \frac{2ca}{a^2+b^2+c^2}\cdots(3)
Adding (1) (2) and (3) we get
\frac{ab}{a^2+ab+b^2} + \frac{bc}{b^2 + bc+c^2} + \frac{ca}{c^2 + ca + b^2}= \frac{2ab+2bc+2ca}{a^2+b^2+c^2}\cdots(4)
Now staring with a+b+c=0 squaring both sides we get
a^2+b^2+c^2 + 2ab + 2bc+2ca= 0
Or a^2+b^2 + c^2 = - (2ab+2bc+2ca)
Or \frac{2ab+2bc+2ca}{a^2 +b^2+ c^2} = -1\cdots(5)
Form (4) and (5) we get \frac{ab}{a^2+ab+b^2} + \frac{bc}{b^2 + bc+c^2} + \frac{ca}{c^2 + ca + b^2}= - 1
No comments:
Post a Comment