We have $a+b+c = 0$
Hence $ a+ b = -c $
Squaring both sides $a^2+2ab + b^2 = c^2$
Adding $a^2+b^2$ on both sides we get
$2(a^2+ab+b^2) = a^2 + b^2 + c^2$
Or $a^2+ab + b^2 = \frac{1}{2}(a^2+b^2+c^2)$
So $\frac{ab}{a^2+ab + b^2} = \frac{2ab}{a^2+b^2+c^2}\cdots(1)$
Similarly we have $\frac{bc}{b^2+bc + c^2} = \frac{2bc}{a^2+b^2+c^2}\cdots(2)$
And $\frac{ca}{c^2+ca + a^2} = \frac{2ca}{a^2+b^2+c^2}\cdots(3)$
Adding (1) (2) and (3) we get
$\frac{ab}{a^2+ab+b^2} + \frac{bc}{b^2 + bc+c^2} + \frac{ca}{c^2 + ca + b^2}= \frac{2ab+2bc+2ca}{a^2+b^2+c^2}\cdots(4)$
Now staring with $a+b+c=0$ squaring both sides we get
$a^2+b^2+c^2 + 2ab + 2bc+2ca= 0$
Or $a^2+b^2 + c^2 = - (2ab+2bc+2ca)$
Or $\frac{2ab+2bc+2ca}{a^2 +b^2+ c^2} = -1\cdots(5)$
Form (4) and (5) we get $\frac{ab}{a^2+ab+b^2} + \frac{bc}{b^2 + bc+c^2} + \frac{ca}{c^2 + ca + b^2}= - 1$
No comments:
Post a Comment