Let $\frac{x-a}{x-b} = m$ and $\frac{a}{b} =n $
So we get $ m + \frac{1}{m} = n + \frac{1}{n}$
Or $m^2n + n = n^2m + m$
Or $m^2n - n^2m = m - n$
Or $mn(m -n ) = m - n$
Or m-n = 0 Or $mn = 1$
case 1
m = n gives $\frac{x-a}{x-b} = \frac{b}{a}$
Or $b(x-a) = x(a-b)$ or $bx-ab = ax-ab$ or $bx = ax$ or $x(a-b)=0$ or $x = 0$
Case 2)
mn =1 gives
$\frac{x-a}{x-b}*\frac{a}{b}=1$
or $a(x-a)=b(x-b)$
Or $ax-a^2=bx-b^2$
Or $ax-bx = a^2-b^2$
Or $x(a-b) = a2-b^2$
Or $x = a + b$
No comments:
Post a Comment