Here let $frac{1}{10} = x$
We have for $|x| \lt 1$
$\sum_{n=0}^{\infty} x^n= \frac{1}{1-x}$
Differentiating both sides wrt x we get
$\sum_{n=0}^{\infty} nx^{n-1}= \frac{1}{(1-x)^2}$
Multiplying both sides by x we get
$\sum_{n=0}^{\infty} nx^n= \frac{x}{(1-x)^2}$
Differenting both sides wrt x we get
$\sum_{n=0}^{\infty} n^2x^{n-1}= \frac{d}{dx} \frac{x}{(1-x)^2}$
Usimg $\frac{d} ({dx} \frac{u}{v})= \frac{v\frac{du}{dx} - u \frac{dv}{dx}}{v^2}$
We get
$\sum_{n=0}^{\infty} n^2x^{n-10} =\frac{(1-x)^2 . 1 - x . (x-2)}{(1-x)^4} = \frac{x +1}{(1-x)^3}$
Multiply by x on both sides we get $\sum_{n=0}^{\infty} n^2x^n = \frac{x^2 +x}{(1-x)^3}$
Putting value of $x = \frac{1}{10}$ we get the result
No comments:
Post a Comment