Processing math: 100%

Thursday, January 11, 2024

2024/002) If x = 2^{\frac{1}{3}} + 2^{-\frac{1}{3}} , How do you prove that 2x^3-6x = 5

 Let a =  2^{\frac{1}{3}}\cdots(1)

So a^3 = 2\cdots(2) 

And \frac{1}{a} = 2^{-\frac{1}{3}}\cdots(3)

And  

x = a+ \frac{1}{a}\cdots(4)

Cubing both sides x^3 = a^3 + \frac{1}{a^3} + 3 * a * \frac{1}{a} ( a + \frac{1}{a})

Or x^3 = a^3 + \frac{1}{a^3} + 3 * ( a + \frac{1}{a})

Or  x^3 = 2 + \frac{1}{2} + 3 *x from (2), 3) and (4)

Or x^3 =  \frac{5}{2} + 3 *x

Or 2x^3 = 5 + 6x

Or 2x^3-6x = 5

Proved


No comments: