Let a = 2^{\frac{1}{3}}\cdots(1)
So a^3 = 2\cdots(2)
And \frac{1}{a} = 2^{-\frac{1}{3}}\cdots(3)
And
x = a+ \frac{1}{a}\cdots(4)
Cubing both sides x^3 = a^3 + \frac{1}{a^3} + 3 * a * \frac{1}{a} ( a + \frac{1}{a})
Or x^3 = a^3 + \frac{1}{a^3} + 3 * ( a + \frac{1}{a})
Or x^3 = 2 + \frac{1}{2} + 3 *x from (2), 3) and (4)
Or x^3 = \frac{5}{2} + 3 *x
Or 2x^3 = 5 + 6x
Or 2x^3-6x = 5
Proved
No comments:
Post a Comment