Let $a = 2^{\frac{1}{3}}\cdots(1)$
So $a^3 = 2\cdots(2)$
And $\frac{1}{a} = 2^{-\frac{1}{3}}\cdots(3)$
And
$x = a+ \frac{1}{a}\cdots(4)$
Cubing both sides $x^3 = a^3 + \frac{1}{a^3} + 3 * a * \frac{1}{a} ( a + \frac{1}{a})$
Or $x^3 = a^3 + \frac{1}{a^3} + 3 * ( a + \frac{1}{a})$
Or $x^3 = 2 + \frac{1}{2} + 3 *x$ from (2), 3) and (4)
Or $x^3 = \frac{5}{2} + 3 *x$
Or $2x^3 = 5 + 6x$
Or $2x^3-6x = 5$
Proved
No comments:
Post a Comment