We first factorize 437
437 = 19 * 23
Now let compute mod relative to19 and 23
As 19 is prime number as as per Wilson'sTheorem we have
18 ! \equiv -1 \pmod {19}\cdots(1)
As 23 is prime number as as per Wilson'sTheorem we have
22 ! \equiv -1 \pmod {23}
Now
22 \equiv -1 \pmod {23}\cdots(2)
21 \equiv -2 \pmod {23} \cdots(3)
20 \equiv -3 \pmod {23}\cdots(4)
19 \equiv -4 \pmod {23}\cdots(5)
As 22! = 22 * 21 * 20 * 19 * 18!
So 22 ! \equiv -1 \pmod {23}
\implies 22 * 21 * 20 * 19 *18 ! \equiv -1 \pmod {23}
\implies (-1) *(-2) * (-3) * (-4) *18 ! \equiv -1 \pmod {23}
\implies 24 *18 ! \equiv -1 \pmod {23}
\implies 24 *18 ! \equiv -1 \pmod {23}
\implies 1 *18 ! \equiv -1 \pmod {23}
\implies 18 ! \equiv -1 \pmod {23}\cdots(6)
Using (1) and (3) we get
18 ! \equiv -1 \pmod {437}
Proved
No comments:
Post a Comment