Loading [MathJax]/extensions/TeX/mathchoice.js

Sunday, February 4, 2024

2024/010) Prove that 18 ! \equiv -1 \pmod {437}

 We first factorize 437

437  = 19 * 23

Now let compute mod relative to19 and 23

As 19 is prime number as as per Wilson'sTheorem we have

  18 ! \equiv -1 \pmod {19}\cdots(1)

As 23 is prime number as as per Wilson'sTheorem we have

  22 ! \equiv -1 \pmod {23}

Now  

22  \equiv -1 \pmod {23}\cdots(2)

21  \equiv -2 \pmod {23} \cdots(3)

20  \equiv -3 \pmod {23}\cdots(4)

19  \equiv -4 \pmod {23}\cdots(5)

As 22! = 22 * 21 * 20 * 19 * 18!

So 22 ! \equiv -1 \pmod {23}

\implies  22 * 21 * 20 *  19 *18 ! \equiv -1 \pmod {23}

 \implies  (-1) *(-2) * (-3) * (-4) *18 ! \equiv -1 \pmod {23}

 \implies  24 *18 ! \equiv -1 \pmod {23}

 \implies  24 *18 ! \equiv -1 \pmod {23}

\implies  1 *18 ! \equiv -1 \pmod {23}

\implies  18 ! \equiv -1 \pmod {23}\cdots(6)

Using (1) and (3) we get 

  18 ! \equiv -1 \pmod {437}

Proved

No comments: