We first factorize 437
$437 = 19 * 23$
Now let compute mod relative to19 and 23
As 19 is prime number as as per Wilson'sTheorem we have
$18 ! \equiv -1 \pmod {19}\cdots(1) $
As 23 is prime number as as per Wilson'sTheorem we have
$22 ! \equiv -1 \pmod {23} $
Now
$22 \equiv -1 \pmod {23}\cdots(2) $
$21 \equiv -2 \pmod {23} \cdots(3)$
$20 \equiv -3 \pmod {23}\cdots(4) $
$19 \equiv -4 \pmod {23}\cdots(5) $
As $22! = 22 * 21 * 20 * 19 * 18! $
So $22 ! \equiv -1 \pmod {23} $
$\implies 22 * 21 * 20 * 19 *18 ! \equiv -1 \pmod {23} $
$\implies (-1) *(-2) * (-3) * (-4) *18 ! \equiv -1 \pmod {23} $
$\implies 24 *18 ! \equiv -1 \pmod {23} $
$\implies 24 *18 ! \equiv -1 \pmod {23} $
$\implies 1 *18 ! \equiv -1 \pmod {23} $
$\implies 18 ! \equiv -1 \pmod {23}\cdots(6) $
Using (1) and (3) we get
$18 ! \equiv -1 \pmod {437} $
Proved
No comments:
Post a Comment