Loading [MathJax]/extensions/TeX/mathchoice.js

Friday, February 16, 2024

2024/014) Solve x^2-y=111 and y^2-x=111 for x\ne y

 We are given 

 x^2-y=111\cdots(1)

 y^2-x=111\cdots(2)

From (1) and (2)

x^2-y = y^2 -x

Or x^2-y^2 + x -y = 0

Or (x-y)(x+y) + (x-y) = 0

Or  (x-y)(x+y+1) = 0

As  x\ne y  dividing by x-y we get x+y+1=0\cdots(3)

Or y = -(x+1)

Putting the value in (1) we get x^2 + (x+ 1) = 111 or x^2 + x - 110 = 0

Or (x-10)(x+11) = 0

Or x= 10 or x = -11

Putting in (3) if x= 10 then y = -11

If x= -11 then y = 10

So Solution set x=10,y= -11 or x=-11,y=10


No comments: