We are given
$x^2-y=111\cdots(1)$
$y^2-x=111\cdots(2)$
From (1) and (2)
$x^2-y = y^2 -x$
Or $x^2-y^2 + x -y = 0$
Or $(x-y)(x+y) + (x-y) = 0$
Or $(x-y)(x+y+1) = 0$
As $ x\ne y$ dividing by x-y we get $x+y+1=0\cdots(3)$
Or $y = -(x+1)$
Putting the value in (1) we get $x^2 + (x+ 1) = 111$ or $x^2 + x - 110 = 0$
Or $(x-10)(x+11) = 0 $
Or $ x= 10$ or $x = -11$
Putting in (3) if $x= 10$ then $y = -11$
If $x= -11 $ then $y = 10$
So Solution set $x=10,y= -11$ or $x=-11,y=10$
No comments:
Post a Comment