Loading [MathJax]/extensions/TeX/mathchoice.js

Friday, February 16, 2024

2024/015) Find natual number n such that 2^n + n | 8^n + n

 1,2,4,6 

We know that x+ y | x^3+y^3

Hence 2^n + n | (2^3)^n + n^3

as 2^n + n | 8^n + n

so 2^n + n | n^3-n 

so we must have n^3-n =0 or 2^n + n <  n^3-n 

n^3-n= 0 gives n = -1,0, 1 and out of theses only 1 is solution

we need to solve  2^n + n <  n^3-n  or  2^n  <  n^3-2n 

let us find an upper bound for n putting a condition 

2^n < n^3 for  n \lt 10

putting n from 1 to 9 we see that n \in \{1, 2,4,6\} satisfy the case and there is no other solution                                                                                                                                               

 

 

No comments: