We have $8 = 2 * 4 = 2 * 2^2$
so $\sqrt{8} = 2 \sqrt{2}$
now $\sqrt{9} = 3$
so $\sqrt{\sqrt{9} - \sqrt{8}}$
= $\sqrt{3 - 2\sqrt{2}}$
this is of the form $\sqrt{n - 2\sqrt{n-1}}$ when n = 3
so $\sqrt{3 - 2\sqrt{2}} = \sqrt{2 + 1 - 2 * \sqrt{2} * 1}$
$= \sqrt{(\sqrt{2})^2 + 1^2 - 2 * \sqrt{2} * 1} $
$= \sqrt{2} - 1$
No comments:
Post a Comment