We know working in modulo 20 as 3 is co-prime to 20
$3^0 \equiv 1 \pmod {20}$
$3^1 \equiv 3 \pmod {20}$
$3^2 \equiv 9 \pmod {20}$
$3^3 \equiv 7 \pmod {20}$
$3^4 \equiv 1 \pmod {20}$
It repeats from this point,
As $3^n \pmod {20}$ is single digit so tens digit is even.
No comments:
Post a Comment