We have
$x_1^2 + x_2^2+ x_3^2-\frac{4}{3}(x_1x_2 + x_2x_3)$
$=(x_1^2- \frac{4}{3}x_1x_2) + ( x_3^2- \frac{4}{3} x_2x_3)+x_2^2$ Combining $x_1x_2$ with $x_1^2$ term and $x_3x_2$ with $x_2^2$ term
$=(x_1^2- 2 *\frac{2}{3}x_1x_2 + (\frac{2}{3}x_2)^2) + ( x_3^2- 2* ( \frac{2}{3} x_2x_3+ (\frac{2}{3}x_2)^2)+(x_2^2- (\frac{2}{3}x_2)^2) - (\frac{2}{3}x_2)^2)$ completing the square and subtracting the same
$=(x_1 - \frac{2}{3}x_2)^2 + ( x_3- \frac{2}{3}x_2)^2+\frac{1}{9} x_2^2$
This is positive or zero
So
$x_1^2 + x_2^2+ x_3^2-\frac{4}{3}(x_1x_2 + x_2x_3)>= 0$
Hence $x_1^2 + x_2^2+ x_3^2 \ge \frac{4}{3}(x_1x_2 + x_2x_3)$
No comments:
Post a Comment