Saturday, January 17, 2026

2026/010) Is it true that $a^2+ab+b^2$ is divisible by 7 for infinitely many coprime pairs (a,b)

As a = 0 gives b= 0 so a = 7k and b= 7m satisfy the given equation but they ate not co-prime  

Because of symmetry let is assume $a=mb \pmod 7$ 

Putting in the given equation we get $m^2+m+1 \equiv 0\pmod 7$

As $m=1$  is not a solution to it multiplying by (m-1) on both sides   we get 

$m^3 \equiv 1 \pmod 7$ 

So $ m \equiv 1  \pmod 7$ or $ m \equiv 2  \pmod 7$ or $ m \equiv 4  \pmod 7$ but as $ m \equiv 1  \pmod 7$ is not a root of original eqution so solution is $ m \equiv 2  \pmod 7$ or $ m \equiv 4  \pmod 7$

So we can chose $(7p+m, 7q+2m)$ or $(7p+m, 7q+2m)$  p and q to be chosen such that the pairs form a co-prime

One set the infinite co-primes $(7p+1,7p+2)$ for any p 

 

 

 

 

No comments: