Friday, January 23, 2026

2026/011) Solve in integer $x^2+4x +2 \equiv 0 \pmod 7$

 To complete square add 2 on both sides to get 

$x^2+4x +4 \equiv 2 \pmod 7$

or $(x+2)^2  \equiv 2 \pmod 7\cdots(1)$

now working mod 7

 $(0^2  \equiv 0 \pmod 7\cdots(2)$

 $(1^2  \equiv 1 \pmod 7\cdots(3)$

 $(2^2  \equiv 4 \pmod 7\cdots(4)$

 $(3^2  \equiv 2 \pmod 7\cdots(5)$ 

 from  (1) and (5) we have

 $(x+2)  \equiv 3 \pmod 7\cdots(6)$ or  $(x+2)  \equiv 3 \pmod 7\cdots(7)$ 

or $x\equiv 1 \pmod 7$ or    $x\equiv 2 \pmod 7$

 

 

 

No comments: