To complete square add 2 on both sides to get
$x^2+4x +4 \equiv 2 \pmod 7$
or $(x+2)^2 \equiv 2 \pmod 7\cdots(1)$
now working mod 7
$(0^2 \equiv 0 \pmod 7\cdots(2)$
$(1^2 \equiv 1 \pmod 7\cdots(3)$
$(2^2 \equiv 4 \pmod 7\cdots(4)$
$(3^2 \equiv 2 \pmod 7\cdots(5)$
from (1) and (5) we have
$(x+2) \equiv 3 \pmod 7\cdots(6)$ or $(x+2) \equiv 3 \pmod 7\cdots(7)$
or $x\equiv 1 \pmod 7$ or $x\equiv 2 \pmod 7$
No comments:
Post a Comment