Loading [MathJax]/jax/element/mml/optable/Latin1Supplement.js

Saturday, October 4, 2014

2014/086) if a\sin\,x=b\sin(x+\frac{2\pi}{3})=c\sin(x+\frac{4\pi}{3})


prove that ab+bc+ca=0 and \dfrac{1}{a} +\dfrac{1}{b}+\dfrac{1}{c}=ab+bc+ca

proof
say
a\sin\,x=b\sin(x+\dfrac{2\pi}{3})=c\sin(x+\dfrac{4\pi}{3})=k
  then
\sin\, x= \dfrac{k}{a}
 \sin(x+\dfrac{2\pi}{3})=\dfrac{k}{b}
 \sin(x+\dfrac{4\pi}{3})=\dfrac{k}{c}
  

so k(\dfrac{1}{a} + \dfrac{1}{b} +  \dfrac{1}{c}) = ( \sin\,x +\sin(x+\frac{2\pi}{3})+ \sin(x+\frac{4\pi}{3}))
=\sin\, x + 2 \cos \dfrac{2\pi}{3} \sin\, x
\sin\, x + 2 \cdot \dfrac{-1}{2} \sin\, x
=  0

as k is not zero

\dfrac{1}{a} + \dfrac{1}{b} +  \dfrac{1}{c}= 0  and multiply both sides by abc to get

bc + ca + ab = 0

as both are zero they are same

No comments: