Solution
We are
given $a + b+ c = 0\cdots(1)$
$(a+b+c)^2
= a^2 +b^2 + c^2 +2ab + 2bc + 2ca$
so
$a^2 +b^2 + c^2 = -2(ab +bc +ca)\cdots(2)$
From (1)
$a(a+b+c) = 0$
$a^2 + ab + ca = 0$
or $a^2 - bc = -(ab + bc+ ca)\cdots(3)$
Similarly
$b^2 - ca = -(ab + bc+ ca)\cdots(4)$
$c^2 - ab = -(ab + bc+ ca)\cdots(5)$
Thus, using (3), (4) & (5), we can rearrange the LHS as follows;
LHS = $\dfrac{a^2}{a^2-bc} +\dfrac{b^2}{b^2-ca} +\dfrac{c^2}{c^2-ab}$
= $\dfrac{a^2 +b^2+ c^2}{-ab-bc-ca}$
= -$\dfrac{a^2 +b^2+ c^2}{ab+bc+ca}$
=
-(- 2)$\dfrac{ab+bc+ca}{ab+bc+ca}$
=
2
No comments:
Post a Comment