Loading [MathJax]/jax/element/mml/optable/Latin1Supplement.js

Saturday, October 18, 2014

2014/094) If a+b+c=0 then prove that \dfrac{a^2}{a^2-bc} +\dfrac{b^2}{b^2-ca} +\dfrac{c^2}{c^2-ab} =2



Solution
We are given a + b+ c = 0\cdots(1)

(a+b+c)^2 = a^2 +b^2 + c^2 +2ab + 2bc + 2ca

 so 


a^2 +b^2 + c^2 = -2(ab +bc +ca)\cdots(2)


 From (1)
a(a+b+c) = 0

a^2 + ab + ca = 0

or a^2 - bc = -(ab + bc+ ca)\cdots(3)

Similarly  

b^2 - ca = -(ab + bc+ ca)\cdots(4)

c^2 - ab = -(ab + bc+ ca)\cdots(5)

Thus, using (3), (4) & (5), we can rearrange the LHS as follows;

LHS = \dfrac{a^2}{a^2-bc} +\dfrac{b^2}{b^2-ca} +\dfrac{c^2}{c^2-ab}

 = \dfrac{a^2 +b^2+ c^2}{-ab-bc-ca}

= -\dfrac{a^2 +b^2+ c^2}{ab+bc+ca}

= -(- 2)\dfrac{ab+bc+ca}{ab+bc+ca}



= 2 

 

No comments: