Solution
We are
given a + b+ c = 0\cdots(1)
(a+b+c)^2
= a^2 +b^2 + c^2 +2ab + 2bc + 2ca
so
a^2 +b^2 + c^2 = -2(ab +bc +ca)\cdots(2)
From (1)
a(a+b+c) = 0
a^2 + ab + ca = 0
or a^2 - bc = -(ab + bc+ ca)\cdots(3)
Similarly
b^2 - ca = -(ab + bc+ ca)\cdots(4)
c^2 - ab = -(ab + bc+ ca)\cdots(5)
Thus, using (3), (4) & (5), we can rearrange the LHS as follows;
LHS = \dfrac{a^2}{a^2-bc} +\dfrac{b^2}{b^2-ca} +\dfrac{c^2}{c^2-ab}
= \dfrac{a^2 +b^2+ c^2}{-ab-bc-ca}
= -\dfrac{a^2 +b^2+ c^2}{ab+bc+ca}
=
-(- 2)\dfrac{ab+bc+ca}{ab+bc+ca}
=
2
No comments:
Post a Comment