we have by AM GM inaquality
$a^2+1 \ge\ 2a \cdots (1) $
$b^2+1 \ge\ 2b \cdots (2) $
$c^2+1 \ge\ 2c \cdots (3) $
further
$\dfrac{a+b+c}{3} \ge \sqrt[3]{ abc}$
or $\dfrac{a+b+c}{3} \ge 1$
or $a+b+c \ge 3$
or $(a+b+c-3 )\ge 0\cdots(4) $
adding (1) (2) and (3) we get
$a^2+b^2+c^2 + 3 \ge 2(a+b+c)$
or $a^2+b^2+c^2 \ge a+b+c + (a+b+c-3)$
using (4) we get
$a^2+b^2+c^2 \ge a+b+c$
No comments:
Post a Comment