we have $x = log_a a + log_a(bc) = log_a (abc)$
or $\dfrac{1}{x} = log_{abc} (a) \cdots (1)$
$y = log_b b + log_b(ca) = log_b (abc)$
or $\dfrac{1}{y} = log_{abc} (b) \cdots(2)$
$z = log_c c + log_c(ab) = log_c (abc)$
or $\dfrac{1}{z} = log_{abc} (c) \cdots (3)$
add (1) (2) and (3) to get
$\dfrac{1}{x} +\dfrac{1}{y} + \dfrac{1}{z} = log_{abc} (a) + log_{abc} (b) + log_{abc} (c) = log_{abc} (abc) = 1$
or $\dfrac{1}{x} +\dfrac{1}{y} + \dfrac{1}{z}=1$
multiplying both sides by xyz we get
$yz + zx + xy = xyz$
proved
this problem I picked from https://in.answers.yahoo.com/question/index?qid=20150503005943AArBg7a
No comments:
Post a Comment