Processing math: 100%

Tuesday, May 12, 2015

2015/048) What could be possible value of integer a if 10^ {2n +1} + a.7^ {2n +1} is divisible by 51 exactly

we have 10^2 = 100 = -2 mod 51

so 10^ {2n +1} = 10(-2)^n

7^2 = -2 mod 51

so a.7^ {2n +1} = 7a (-2)^n mod 51

10^{2n +1} + a.7^ {2n +1} mod 51
= 10(-2)^n  + 7a (-2)^n = 0 as divisible by 51

so 10 + 7a = 0 mod 51
7a = - 10 mod 51 = 41 mod 51

7a = 41 mod 51

we need to find inverse of 7 mod 51( we can find by extended euclid algorithm as below)

51 = 7 * 7 + 2  or  2 = 51- 7 * 7

7 = 2 * 3 + 1 or 1= 7 - 2 * 3 = 7 - (51- 7 * 7) * 3 = 51 * 3 - 22 * 7

so 22 = inverse of 7 mod 51

so a = 41 * 22 mod 51 or 35 mod 51 or 51k + 35


 

No comments: