so $10^ {2n +1} = 10(-2)^n$
$7^2 = -2$ mod 51
so $a.7^ {2n +1} = 7a (-2)^n$ mod 51
$10^{2n +1} + a.7^ {2n +1}$ mod 51
= $10(-2)^n + 7a (-2)^n = 0$ as divisible by 51
so $10 + 7a = 0$ mod 51
$7a = - 10$ mod 51 = 41 mod 51
$7a = 41$ mod 51
we need to find inverse of 7 mod 51( we can find by extended euclid algorithm as below)
$51 = 7 * 7 + 2$ or $2 = 51- 7 * 7$
$7 = 2 * 3 + 1$ or $1= 7 - 2 * 3 = 7 - (51- 7 * 7) * 3 = 51 * 3 - 22 * 7$
so 22 = inverse of 7 mod 51
so $a = 41 * 22$ mod 51 or 35 mod 51 or 51k + 35
No comments:
Post a Comment