are concurrent then prove that \dfrac{1}{1-a} + \dfrac{1}{1-b} + \dfrac{1}{1-c} = 1
proof
We have
a = - \dfrac{y+1}{x}
or 1- a = \dfrac{x+y+1}{x}
or \dfrac{1}{1-a} = \dfrac{x}{x+y + 1} \cdots 1
similarly
x +by+1=0
=> x+1 = - by
or b = -\dfrac{x+1}{y}
or 1-b= \dfrac{x+y+1}{y}
or \dfrac{1}{1-b} = \dfrac{y}{x+y+1}\cdots (2)
and x+y+c=0
=> -c = x + y
=> 1-c = x+y+1
or \dfrac{1}{1-c} = \dfrac{1}{x+y+1}\cdots(3)
adding all 3 we get the
\dfrac{1}{1-a} + \dfrac{1}{1-b} + \dfrac{1}{1-c} = \dfrac{x+ y + 1}{x+y+1} =1
Proved
No comments:
Post a Comment