Processing math: 100%

Monday, May 25, 2015

2015/051)If m\tan(a-30^\circ)=n\tan(a+120^\circ) show that \cos2a=\dfrac{m+n}{2(m-n)}



we have \tan (a+ 120^\circ) = - \cot(a + 30^\circ) using \tan (x+90^\circ) = - cot\, x
so mtan(a-30^\circ)= -n \cot ( a+ 30^\circ)
so \tan (a+30^\circ) tan (a-30^\circ) = - \dfrac{n}{m}
\dfrac{\tan\, a + \tan\, 30^\circ}{1- \tan\, a \tan\, 30^\circ}\dfrac{tan\, a -\tan\, 30^\circ}{1 + \tan\, a \tan\, 30^\circ} = -\dfrac{n}{m}
or \dfrac{\tan ^2 a - \tan ^2 30^\circ}{1- \tan ^2 a \tan ^2 30^\circ} = -\dfrac{n}{m}


or \dfrac{\tan ^2 30^\circ-\tan ^2 a}{1- \tan ^2 a \tan ^2 30^\circ} = \dfrac{n}{m}

or \dfrac{\frac{1}{3}-\tan ^2 a}{1- \frac{1}{3}\tan ^2 a} = \dfrac{n}{m}


 or \dfrac{1-3 \tan ^2 a}{3- \tan ^2 a} = \dfrac{n}{m}

  using componendo dividendo to get

\dfrac{4 - 4 \tan ^2 a}{- 2 - 2 \tan ^2 a} = \dfrac{n+m}{n-m}

or 

2 \dfrac{1 - 1 \tan ^2 a}{1 + \tan ^2 a} = \dfrac{n+m}{m-n}

or 

2 \dfrac{1 - \tan ^2 a}{sec ^2 a} = \dfrac{n+m}{m-n}

or

2 (1 - \tan ^2 a)(cos ^2 a) = \dfrac{n+m}{m-n}

 or (\cos^2 a-\sin ^2 a) = \dfrac{m+n}{2(m-n)}
or \cos 2a = \dfrac{m+n}{2(m-n)}


No comments: