Processing math: 100%

Thursday, February 10, 2022

2022/019) Find real x and y such that 16^{x^2+y} + 16^{y^2 + x} =1

 We have both 16^{x^2+ y} and 16^{y^2+x} positive.

So we can apply AM GM inquality gettting

\frac{16^{x^2+y} + 16^{y^2+x}}{2}\ge (16^{x^2+y} 16^{y^2+x})^{\frac{1}{2}}

or 16^{x^2+y} + 16^{y^2+x}\ge  2 (16^{x^2+y+ y^2+x})^{\frac{1}{2}}

we are given LHS = 1 so 

1 \ge 2 (16^{x^2+y+ y^2+x})^{\frac{1}{2}}

or 1 \ge 16^{\frac{1}{4}}  (16^{x^2+y+ y^2+x})^{\frac{1}{2}}

or 1 \ge  (16^{x^2+y+ y^2+x+ \frac{1}{2}})^{\frac{1}{2}}

or x^2 + y + y^2 + x + \frac{1}{2} <=0 

Now we combine line terms and complete square to get 

(x^2 + x + \frac{1}{4}) + (y ^2 + y + \frac{1}{4}) <= 0

or (x+\frac{1}{2})^2 + (y + \frac{1}{2})^2 <=0

it is sum of 2 squares so cannot be be -ve so

both terms and sum has to be zero givng x = y = \frac{-1}{2}

No comments: