We have both $16^{x^2+ y}$ and $16^{y^2+x}$ positive.
So we can apply AM GM inquality gettting
$\frac{16^{x^2+y} + 16^{y^2+x}}{2}\ge (16^{x^2+y} 16^{y^2+x})^{\frac{1}{2}}$
or $16^{x^2+y} + 16^{y^2+x}\ge 2 (16^{x^2+y+ y^2+x})^{\frac{1}{2}}$
we are given LHS = 1 so
$ 1 \ge 2 (16^{x^2+y+ y^2+x})^{\frac{1}{2}}$
or $ 1 \ge 16^{\frac{1}{4}} (16^{x^2+y+ y^2+x})^{\frac{1}{2}}$
or $ 1 \ge (16^{x^2+y+ y^2+x+ \frac{1}{2}})^{\frac{1}{2}}$
or $x^2 + y + y^2 + x + \frac{1}{2} <=0$
Now we combine line terms and complete square to get
$(x^2 + x + \frac{1}{4}) + (y ^2 + y + \frac{1}{4}) <= 0$
or $(x+\frac{1}{2})^2 + (y + \frac{1}{2})^2 <=0$
it is sum of 2 squares so cannot be be -ve so
both terms and sum has to be zero givng $x = y = \frac{-1}{2}$
No comments:
Post a Comment