We have by AM GM inequaity among $\frac{x}{y}$ ,$\frac{y}{z}$, $\frac{z}{x}$
we have
$\frac{\frac{x}{y} + \frac{y}{z} + \frac{z}{x}}{3} >= \sqrt[2]{\frac{x}{y} * \frac{y}{z} * \frac{z}{x}}$
or $\frac{\frac{x}{y} + \frac{y}{z} + \frac{z}{x}}{3} >= \sqrt[2]{1}$
or $\frac{x}{y} + \frac{y}{z} + \frac{z}{x}>= 3$
this is greater than 3 if all are not equal and is 3 if all are equal
or $\frac{x}{y} = \frac{y}{z} = \frac{z}{x}$
or x = y = z (any integer)
No comments:
Post a Comment