We have by AM GM inequaity among \frac{x}{y} ,\frac{y}{z}, \frac{z}{x}
we have
\frac{\frac{x}{y} + \frac{y}{z} + \frac{z}{x}}{3} >= \sqrt[2]{\frac{x}{y} * \frac{y}{z} * \frac{z}{x}}
or \frac{\frac{x}{y} + \frac{y}{z} + \frac{z}{x}}{3} >= \sqrt[2]{1}
or \frac{x}{y} + \frac{y}{z} + \frac{z}{x}>= 3
this is greater than 3 if all are not equal and is 3 if all are equal
or \frac{x}{y} = \frac{y}{z} = \frac{z}{x}
or x = y = z (any integer)
No comments:
Post a Comment