we are given
$m^2 = n +2 \cdots(1)$
$n^2 = m + 2\cdots(2)$
$4 mn - m^3 - n^3$
$= 4mn - m(m^2) - n(n^2)$
$= 4mn - m(n+2) - m(n+2)$ using (1) and (2)
$= 2mn - 2(m+n)$
or $4 mn - m^3 - n^3= 2mn - 2(m+n)\cdots(3)$
we need to commte mn and m + n
sutarcting (2) from (1)
$m^2 - n^2 = n - m$
as n-m is not zero divding by n-m we have
$m+n = -1\cdots(4)$
adding (1) and (2)
$m^2 + n^2 = (m+n) + 4 = -1 + 4 = 3\cdots(5)$ putting value of m + n from (4)
or
Hence $2mn = (m+n)^2 - (m^2+n^2) = 1- 3 = -2$
putting the values from (4) and (6) in (3) we get
$4 mn - m^3 - n^3= 2mn - 2(m+n) = -2 -2 (-1) = 0$
No comments:
Post a Comment