Processing math: 100%

Saturday, February 12, 2022

2022/020) Given m^2 = n +2 , m^2= n + 2 and m and n are unequal Compute 4mn - m^3 - n^3

we are given 

m^2 = n +2 \cdots(1)

n^2 = m + 2\cdots(2)

4 mn - m^3 - n^3

= 4mn - m(m^2)  - n(n^2)

= 4mn - m(n+2)  - m(n+2) using (1) and (2)

= 2mn - 2(m+n)

or 4 mn - m^3 - n^3=  2mn - 2(m+n)\cdots(3) 

we need to commte mn and m + n

sutarcting (2) from (1)

m^2 - n^2 = n - m

as n-m is not zero divding by n-m we have

m+n = -1\cdots(4)

adding (1) and (2)

m^2 + n^2 = (m+n) + 4 = -1 + 4 = 3\cdots(5) putting value of m + n from (4)

or

Hence 2mn = (m+n)^2 - (m^2+n^2) =  1- 3 = -2

putting the values from (4) and (6) in (3) we get  

 4 mn - m^3 - n^3=  2mn - 2(m+n) =  -2 -2 (-1) = 0 

 

No comments: