we can devide by a to get x^3+dx+e=0 where d=\frac{b}{a},d=\frac{c}{a} d,e are rational.
Let \alpha,\beta,\alpha\beta be the three roots
so we get using vieta's relations
\alpha+\beta+\alpha\beta= 0\cdots(1)
\alpha\beta+\alpha \alpha\beta + \beta\alpha\beta = d\cdots(2)
\alpha\beta\alpha\beta= \alpha^2\beta^2= -e\cdots(3)
from (2)
\alpha\beta+ \alpha\beta(\alpha+\beta) = d
or \alpha\beta+ \alpha\beta(\alpha+\beta) = d
or \alpha\beta+ \alpha\beta(-\alpha\beta) = d (Using (1)
or \alpha\beta - (\alpha\beta)^2 = d
or \alpha\beta + e = d
or \alpha\beta = d - e
hence the root \alpha\beta is rational
No comments:
Post a Comment