we can devide by a to get $x^3+dx+e=0$ where $d=\frac{b}{a},d=\frac{c}{a}$ $d,e$ are rational.
Let $\alpha,\beta,\alpha\beta$ be the three roots
so we get using vieta's relations
$\alpha+\beta+\alpha\beta= 0\cdots(1)$
$\alpha\beta+\alpha \alpha\beta + \beta\alpha\beta = d\cdots(2)$
$\alpha\beta\alpha\beta= \alpha^2\beta^2= -e\cdots(3)$
from (2)
$\alpha\beta+ \alpha\beta(\alpha+\beta) = d$
or $\alpha\beta+ \alpha\beta(\alpha+\beta) = d$
or $\alpha\beta+ \alpha\beta(-\alpha\beta) = d$ (Using (1)
or $\alpha\beta - (\alpha\beta)^2 = d$
or $\alpha\beta + e = d$
or $\alpha\beta = d - e$
hence the root $\alpha\beta$ is rational
No comments:
Post a Comment