Processing math: 100%

Tuesday, June 21, 2016

2016/054) Let a,b,c be rational and one of the roots of ax^3+bx+c=0 is equal to product of other two roots. Prove that this root is rational.

we can devide by a to get x^3+dx+e=0 where d=\frac{b}{a},d=\frac{c}{a} d,e are rational.
Let \alpha,\beta,\alpha\beta be the three roots
so we get using vieta's relations
\alpha+\beta+\alpha\beta= 0\cdots(1)
\alpha\beta+\alpha \alpha\beta + \beta\alpha\beta  = d\cdots(2)
\alpha\beta\alpha\beta= \alpha^2\beta^2= -e\cdots(3)
from (2)
\alpha\beta+ \alpha\beta(\alpha+\beta)  = d
or \alpha\beta+ \alpha\beta(\alpha+\beta)  = d
or \alpha\beta+ \alpha\beta(-\alpha\beta)  = d (Using (1)
or \alpha\beta - (\alpha\beta)^2  = d
or \alpha\beta + e  = d
or \alpha\beta = d - e
hence the root  \alpha\beta is rational

No comments: