Tuesday, June 28, 2016

2016/058) Show that $\frac{1}{n}+\frac{1}{n+1}+\frac{1}{n+2}+\cdots\frac{1}{2n-1}$

=$1-\frac{1}{2} + \frac{1}{3} + \frac{1}{4}\cdots -\frac{1}{2n-1}$
 We have RHS = $\sum_{k=1}^{n}\frac{1}{2k-1} - \sum_{k=1}^{n}\frac{1}{2n}$ $=\sum_{k=1}^{n}\frac{1}{2n-1} + \sum_{k=1}^{n}\frac{1}{2k} - 2 \sum_{k=1}^{n-1}\frac{1}{2k}$ $=\sum_{k=1}^{2n-1}\frac{1}{k}- \sum_{k=1}^{n-1}\frac{1}{k}$ $=\sum_{k=n}^{2n-1}\frac{1}{k}=LHS$

No comments: