=$1-\frac{1}{2} + \frac{1}{3} + \frac{1}{4}\cdots -\frac{1}{2n-1}$
We have RHS = $\sum_{k=1}^{n}\frac{1}{2k-1} - \sum_{k=1}^{n}\frac{1}{2n}$
$=\sum_{k=1}^{n}\frac{1}{2n-1} + \sum_{k=1}^{n}\frac{1}{2k} - 2 \sum_{k=1}^{n-1}\frac{1}{2k}$
$=\sum_{k=1}^{2n-1}\frac{1}{k}- \sum_{k=1}^{n-1}\frac{1}{k}$
$=\sum_{k=n}^{2n-1}\frac{1}{k}=LHS$
No comments:
Post a Comment