The number has to be of the form $5^a6^b7^c$
now $5^{a+1}6^b7^c$ is a 5th power so $a+1 \equiv 0 \pmod 5$ ,$b \equiv 0 \pmod 5$,$c \equiv 0 \pmod 5$
$5^a6^{b+1}7^c$ is a 6th power so $a \equiv 0 \pmod 6$ ,$b+1 \equiv 0 \pmod 6$,$c \equiv 0 \pmod 6$
$5^a6^b7^{c+1}$ is a 7th power so $a \equiv 0 \pmod 7$ ,$b \equiv 7 \pmod 5$,$c+1 \equiv 0 \pmod 7$
so we need to solve for
$a+1 \equiv 0 \pmod 5$ ,$a \equiv 0 \pmod 42$ giving a = 84 (taking multiples of 42 adding 1 to be divsible by 5)
$b+1 \equiv 0 \pmod 6$ ,$b \equiv 0 \pmod 35$ giving b = 35 (taking multiples of 35 adding 1 to be divsible by 6)
$c+1 \equiv 0 \pmod 7$ ,$c \equiv 0 \pmod 30$ giving c = 90 (taking multiples of 30 adding 1 to be divsible by 7)
so the number is $5^{84}* 6^{35}*c^{90}$
No comments:
Post a Comment