$P(x)=x^8-4x^7+7x^6+ax^5+bx^4+cx^3+dx^2+ex+f$ factorizes into eight linear factors $x-x_i$ with $x_i>0$ for $i=1,\,2,\,\cdots,\,8$.
Determine all possible values of $f$.
Solution
Using Vieta's formula we have
$\sum_{i=1}^8 x_i = 4\dots(1)$
$\sum_{i=1}^7 \sum_{j=i+1}^8 x_ix_j = 7\cdots(2)$
$\prod_{i=1}^8 x_i = f\cdots(3)$
We have
$\sum_{i=1}^8 x_i^2= (\sum_{i=1}^8 x_i)^2 - 2 \sum_{i=1}^7 \sum_{j=i+1}^8 x_ix_j $
$= 4^2 - 2 * 7 = 2$
or $\sum_{i=1}^8 x_i^2 = 2$
Subtracting (1) from above
$\sum_{i=1}^8 (x_i^2 - x_i) = -2$
adding $\frac{1}{4}$ to each term on LHS that is 2 and adding 2 on RHS we get
$\sum_{i=1}^8 (x_i^2 - x_i + \frac{1}{4}) = 0$
or $\sum_{i=1}^8 (x_i - \frac{1}{2})^2 = 0$
so $x_i = \frac{1}{2}$ for each i.
this satisfies the criteria that $x_i$ is positive
putting this in (3) we get $f = \frac{1}{\sqrt[8]2}$