Let x = n + r where n is the integer part and r is the fractional part
we have
$\lfloor x \rfloor ^2 = 2(x+r) - 1$
so $n^2 = 2n -1$ when $ r < \frac{1}{2}$ or $n^2 = 2n$ and $ \frac{1}{2} \le r < 1$
$n^2 = 2n -1$ when $ r < \frac{1}{2}$
gives $n^2 - 2n + 1 = 0$ or $(n-1)^2 =0 $ or n= 1 giving $ 1 \le x < 1.5$
$n^2 = 2n$ and $\frac{1}{2} \le r < 1$
gives n = 0 or 2 giving $ .5 \le x < 1$ or giving $ 2.5 \le x < 3$
combining them we have $ .5 \le x < 1. 5 $ or $ 2.5 \le x < 3$
No comments:
Post a Comment