We have p+q + r = 0
So p^3 + q^3 + r^3 = 3pqr\cdots(1)
And p+q = -r
or (p+q)^2 = r^2\cdots(2)
Similary (q+r)^2 = p^2\cdots(3)
(r+p)^2 = q^2\cdots(4)
Hence \frac{(p+q)^2}{3pq}+\frac{(q+r)^2}{3qr} +\frac{(r+p)^2}{3rp}
= \frac{r^2}{3pq}+\frac{p^2}{3qr} +\frac{q^2}{3rp} (from (2), (3), (4)
= \frac{r^3+q^3+ p^3}{3pqr} = \frac{3pqr}{3pqr} = 1 (using (1))
No comments:
Post a Comment