We are given
$\sum_{k=1}^{n} a_{2k-1}^2 = x\cdots(1)$
$\sum_{k=1}^{n} a_{2k}^2 = y\cdots(2)$
subtract (1) from (2) to get
$\sum_{k=1}^{n} (a_{2k}^2- a_{2k-1}^2) = y-x$
Or $\sum_{k=1}^{n} (a_{2k}- a_{2k-1})(a_{2k} + a_{2k-1}) = y-x$
But $(a_{2k}- a_{2k-1}= d$ common difference so we get
$\sum_{k=1}^{n} d(a_{2k} + a_{2k-1}) = y-x$
or $d \sum_{k=1}^{n} (a_{2k} + a_{2k-1}) = y-x$
Or $d \sum_{k=1}^{2n} (a_{k}) = y-x\cdots($
as $a_k = a_1 + (k-1) d$ for any k so we have
Now $a_k + a_{2n+1-k} = a_1 + (k-1)d + a_1 + (2n+1-k-1)d = 2a_1 + (2n-1) d = = a_1 + a_1 + (2n-1) d = a_1 + a_{2n}$
so $a_n + a_{n+1}d = a_1 + a_{2n} = z$
so $a_k + a_{2n+1-k} = z$
so
$d \sum_{k=1}^{2n} (a_{k}) $
$= d \sum_{k=1}^{n} (a_{k} + a_{2n+1-k})$
$= d \sum_{k=1}^{n} z$
= 2dnz
So $2dnz = y-x$
No comments:
Post a Comment