Processing math: 100%

Friday, November 12, 2021

2021/095) Let a,\,b,\,c,\,d,\,e,\,f be real numbers such that the polynomial

 P(x)=x^8-4x^7+7x^6+ax^5+bx^4+cx^3+dx^2+ex+f factorizes into eight linear factors x-x_i with x_i>0 for i=1,\,2,\,\cdots,\,8.

Determine all possible values of f.

Solution 

Using Vieta's formula  we have


\sum_{i=1}^8 x_i = 4\dots(1)

\sum_{i=1}^7 \sum_{j=i+1}^8   x_ix_j = 7\cdots(2)

\prod_{i=1}^8 x_i = f\cdots(3)

We have

\sum_{i=1}^8 x_i^2= (\sum_{i=1}^8 x_i)^2 - 2 \sum_{i=1}^7 \sum_{j=i+1}^8   x_ix_j

= 4^2 - 2 * 7 = 2

or \sum_{i=1}^8 x_i^2 = 2

Subtracting (1) from above

\sum_{i=1}^8 (x_i^2 - x_i)  = -2

adding \frac{1}{4} to each term on LHS that is 2 and adding 2 on RHS we get

\sum_{i=1}^8 (x_i^2 - x_i + \frac{1}{4})  = 0

or \sum_{i=1}^8 (x_i - \frac{1}{2})^2  = 0

so x_i = \frac{1}{2} for each i.

this satisfies the criteria that x_i is positive

putting this in (3) we get f = \frac{1}{\sqrt[8]2}

No comments: