(\sin\theta+i\cos\theta)^8 = i^8(\cos\theta - i \sin \theta)^8
=(e^{-i\theta})^8= e^{-i8\theta}
=\cos 8\theta - i \sin 8\theta
some short and selected math problems of different levels in random order I try to keep the ans simple
Thursday, December 31, 2015
2015/118) Without using logs and calculator find the number of digits in 2^{100}
2^{10} = 1024 > 1000 = 10^3
so 2^{100} > 10^{30}
further
2^{10} < 1025 < 10^3 * \frac{41}{40}= 10^3 *( 1+ \frac{1}{40})
so 2^{100} < 10^{30} * ( 1+ \frac{1}{40})^{10} < 10^{30} * ( 1+ \frac{1}{40})^{40}< 10^{30} * e < 10^{30} * 3
so 10^{30} < 2^{100} < 3 * 10^{30}
hence 31 digits
so 2^{100} > 10^{30}
further
2^{10} < 1025 < 10^3 * \frac{41}{40}= 10^3 *( 1+ \frac{1}{40})
so 2^{100} < 10^{30} * ( 1+ \frac{1}{40})^{10} < 10^{30} * ( 1+ \frac{1}{40})^{40}< 10^{30} * e < 10^{30} * 3
so 10^{30} < 2^{100} < 3 * 10^{30}
hence 31 digits
Tuesday, December 29, 2015
2015/117) If m\tan(a-30^\circ)=n\tan(a+120^\circ) show that \cos2a=\frac{m+n}{2(m-n)}
We have \tan (a+ 120^\circ) = - \cot(a + 30^\circ) using \tan (x+90^\circ) = - \cot x
so m\tan(a-30^\circ)= -n \cot ( a+ 30^\circ)
so \tan (a+30^\circ) \tan (a-30^\circ) = \dfrac{-n}{m}
or \dfrac{\tan a + \tan 30^\circ}{1- \tan a \tan 30^\circ} * \dfrac{\tan a -\tan 30^\circ}{1 + \tan a \tan 30^\circ)} = \dfrac{-n}{m}
or \dfrac{tan ^2 a - tan ^2 30^\circ}{1- tan ^2 a tan ^2 30^\circ} = \dfrac{n}{m}
or \dfrac{tan ^2 a - \frac{1}{3}}{1- tan ^2 a \frac{1}{3}} = \dfrac{n}{m}
or \dfrac{3 tan ^2 a -1}{3 - tan ^2 a} = \dfrac{n}{m}
or \dfrac{1-3 tan ^2 a}{3- tan ^2 a} = \dfrac{n}{m}
use componendo dividendo to get
\dfrac{4 - 4 \tan ^2 a}{- 2 - 2 \tan ^2 a} = \dfrac{n+m}{n-m}
or 2\dfrac{1 - tan ^2 a}{1 + 2 tan ^2 a} = \dfrac{n+m}{m-n}
or \dfrac{1 - tan ^2 a}{1 + 2 tan ^2 a} = \dfrac{n+m}{2(m-n)}
or \cos 2a = \dfrac{n+m}{2(m-n)}
so m\tan(a-30^\circ)= -n \cot ( a+ 30^\circ)
so \tan (a+30^\circ) \tan (a-30^\circ) = \dfrac{-n}{m}
or \dfrac{\tan a + \tan 30^\circ}{1- \tan a \tan 30^\circ} * \dfrac{\tan a -\tan 30^\circ}{1 + \tan a \tan 30^\circ)} = \dfrac{-n}{m}
or \dfrac{tan ^2 a - tan ^2 30^\circ}{1- tan ^2 a tan ^2 30^\circ} = \dfrac{n}{m}
or \dfrac{tan ^2 a - \frac{1}{3}}{1- tan ^2 a \frac{1}{3}} = \dfrac{n}{m}
or \dfrac{3 tan ^2 a -1}{3 - tan ^2 a} = \dfrac{n}{m}
or \dfrac{1-3 tan ^2 a}{3- tan ^2 a} = \dfrac{n}{m}
use componendo dividendo to get
\dfrac{4 - 4 \tan ^2 a}{- 2 - 2 \tan ^2 a} = \dfrac{n+m}{n-m}
or 2\dfrac{1 - tan ^2 a}{1 + 2 tan ^2 a} = \dfrac{n+m}{m-n}
or \dfrac{1 - tan ^2 a}{1 + 2 tan ^2 a} = \dfrac{n+m}{2(m-n)}
or \cos 2a = \dfrac{n+m}{2(m-n)}
2015/116) Find the limit of the product as k goes to infinite \prod_{n=1}^{k}\frac{n^2}{n^2-1}
We propose \prod_{n=1}^{k}\frac{n^2}{n^2-1}=\frac{2k}{k+1}
for n =2 we have product = \frac{4}{3} = \frac{2 * 2}{2+1}
let it be true of n = k
so we have \prod_{n=1}^{k}\frac{n^2}{n^2-1}=\frac{2k}{k+1}
multiply by (k+1)st term to get f(k+1) = \prod_{n=1}^{k}\frac{n^2}{n^2-1} * \frac{(k+1)^2}{(k+1)^2 - 1}
= \frac{2k}{k+1} * \frac{(k+1)^2}{k(k+2)} = \frac{2 * (k +1)}{(k+2)}
so if it is true for k it is true for k + 1
Now that we have found the closed form as k goes to infinite above product goes to 2 (converges to 2)
for n =2 we have product = \frac{4}{3} = \frac{2 * 2}{2+1}
let it be true of n = k
so we have \prod_{n=1}^{k}\frac{n^2}{n^2-1}=\frac{2k}{k+1}
multiply by (k+1)st term to get f(k+1) = \prod_{n=1}^{k}\frac{n^2}{n^2-1} * \frac{(k+1)^2}{(k+1)^2 - 1}
= \frac{2k}{k+1} * \frac{(k+1)^2}{k(k+2)} = \frac{2 * (k +1)}{(k+2)}
so if it is true for k it is true for k + 1
Now that we have found the closed form as k goes to infinite above product goes to 2 (converges to 2)
Monday, December 28, 2015
2015/115) If a+b+c=\pi
Prove that
\sin^3 a+\sin^3 b+ \sin^3 c=3\cos(\frac{a}{2})\cos(\frac{b}{2})\cos(\frac{c}{2})
+ \cos(\frac{3a}{2})\cos(\frac{3b}{2})\cos(\frac{3c}{2})
Solution
we have \sin(3x) = 3\sin(x) - 4\sin^3(x)
hence
\sin ^3 x = (\frac{3}{4}\sin x - \frac{1}{4}\sin (3x))
so
\sin^3 A+\sin^3 B + \sin^3 C = \frac{3}{4}( \sin A + \sin B + \sin C) - \frac{1}{4}( \sin 3A + \sin 3B + \sin 3C)\cdots(1)
we have if A + B+ C = \pi
\sin \frac{A+B}{2} = sin (\frac{\pi}{2}- \frac{C}{2}) = \cos \frac{C}{2}
and \cos \frac{A+B}{2} = \cos (\frac{\pi}{2} - \frac{C}{2}) = \sin \frac{C}{2}
Now
\sin A + \sin B + \sin C= 2 \sin \frac{A+B}{2} \cos\frac{A-B}{2} + 2 \sin \frac{C}{2} \cos \frac{C}{2}
= 2 \cos\frac{C}{2} \cos\frac{A-B}{2} + 2 \cos\frac{A+B}{2} \cos \frac{C}{2}
= 2 \cos (\cos \frac{A-B}{2} + \cos \frac{A+B}{2})
= 4 \cos \frac{A}{2}cos \frac{B}{2} \cos \frac{C}{2}
hence \sin A + \sin B + \sin C = 4 \cos \frac{A}{2}cos \frac{B}{2} \cos \frac{C}{2}\cdots(2)
By similar argument if
3A+3B+3C = 3\pi
then
\sin \frac{3A + 3B}{2} = \sin \frac{3\pi- 3c}{2} = \cos \frac{3C}{2}
and
\cos \frac{3A + 3B}{2} = \cos \frac{3\pi- 3c}{2} = -\sin \frac{3C}{2}
using this we get
\sin 3A + \sin 3B + \sin 3C = - 4 \cos \frac{3A}{2}cos \frac{3B}{2} \cos \frac{3C}{2}\cdots(3)
using (1), (2),(3) we get the result
\sin^3 a+\sin^3 b+ \sin^3 c=3\cos(\frac{a}{2})\cos(\frac{b}{2})\cos(\frac{c}{2})
+ \cos(\frac{3a}{2})\cos(\frac{3b}{2})\cos(\frac{3c}{2})
Solution
we have \sin(3x) = 3\sin(x) - 4\sin^3(x)
hence
\sin ^3 x = (\frac{3}{4}\sin x - \frac{1}{4}\sin (3x))
so
\sin^3 A+\sin^3 B + \sin^3 C = \frac{3}{4}( \sin A + \sin B + \sin C) - \frac{1}{4}( \sin 3A + \sin 3B + \sin 3C)\cdots(1)
we have if A + B+ C = \pi
\sin \frac{A+B}{2} = sin (\frac{\pi}{2}- \frac{C}{2}) = \cos \frac{C}{2}
and \cos \frac{A+B}{2} = \cos (\frac{\pi}{2} - \frac{C}{2}) = \sin \frac{C}{2}
Now
\sin A + \sin B + \sin C= 2 \sin \frac{A+B}{2} \cos\frac{A-B}{2} + 2 \sin \frac{C}{2} \cos \frac{C}{2}
= 2 \cos\frac{C}{2} \cos\frac{A-B}{2} + 2 \cos\frac{A+B}{2} \cos \frac{C}{2}
= 2 \cos (\cos \frac{A-B}{2} + \cos \frac{A+B}{2})
= 4 \cos \frac{A}{2}cos \frac{B}{2} \cos \frac{C}{2}
hence \sin A + \sin B + \sin C = 4 \cos \frac{A}{2}cos \frac{B}{2} \cos \frac{C}{2}\cdots(2)
By similar argument if
3A+3B+3C = 3\pi
then
\sin \frac{3A + 3B}{2} = \sin \frac{3\pi- 3c}{2} = \cos \frac{3C}{2}
and
\cos \frac{3A + 3B}{2} = \cos \frac{3\pi- 3c}{2} = -\sin \frac{3C}{2}
using this we get
\sin 3A + \sin 3B + \sin 3C = - 4 \cos \frac{3A}{2}cos \frac{3B}{2} \cos \frac{3C}{2}\cdots(3)
using (1), (2),(3) we get the result
Sunday, December 27, 2015
2015/114) Solve in real a^3 + b^3 = 8 – 6ab
a^3 + b^3 - 8 + 6ab = 0
or
a^3 + b^3 + (-2)^3 -3(-2)(a)(b) = 0
=> a + b – 2 = 0 or a=b= - 2
using the fact
x^3 + y^3 + z^3 – 3xyz =
\dfrac{1}{2}(x+y+z)((x-y)^2 + (y-z)^2 + (z-x)^2)
2015/113) There is a number n between to successive squares.this is k larger than the smaller number and l smaller than the larger number . Prove that n-kl is a perfect square.
Let the number n be between a^2 and (a+1)^2
As per given condition
n- a^2 = k\cdots(1)
(a+1)^2 –n = l\cdots(2)
Adding (1) and (2)
k + l = 2a + 1
or l = 2a + 1 - k
now
n- kl = (a^2+k) – k(2a+1-k) = a^2 + k – 2ak –k + k^2 = a^2 – 2ak + k^2 = (a-k)^2
Hence proved
As per given condition
n- a^2 = k\cdots(1)
(a+1)^2 –n = l\cdots(2)
Adding (1) and (2)
k + l = 2a + 1
or l = 2a + 1 - k
now
n- kl = (a^2+k) – k(2a+1-k) = a^2 + k – 2ak –k + k^2 = a^2 – 2ak + k^2 = (a-k)^2
Hence proved
2015/112) show that \cos2A + \cos6A + \cos8A = \dfrac{\sqrt{13)}-1}{4} where A = \dfrac{pi}{13}
Let
x = \cos2A + \cos6A + \cos8A \cdots(1)
by seeing that \sqrt{13} on right
square both sides of (1) to get
x^2 = \cos^2 2A + \cos^2 6A + \cos^2 8A + 2 \cos 2A \cos 6A + 2 \cos 2A \cos 8A + 2 \cos 6A \cos 8A
multiply by 2 to get
2 x^2 = 2 \cos^2 2A + 2 \cos^2 6A + 2 \cos^2 8A
+ 2(2 \cos 2A \cos 6A + 2 \cos 2A \cos 8A + 2 \cos 6A \cos 8A)
= \cos 4A + 1 + \cos 12 A + 1 + \cos 16 A + 1
+ 2( \cos 8A +\cos 4 A + \cos 10 A + \cos 6A + \cos 14 A + \cos 2 A)
= 3 + \cos 4A + \cos 12 A + \cos 16 A
+ 2 ( \cos 8A + \cos 6A + \cos 2A + \cos 4A + \cos 10 A + \cos 14A)
Now \cos 16 A = \cos 10 A as 26 A = 2\pi
\cos 14 A = \cos 12 A as 26 A = 2\pi
So we continue
= 3 + \cos 4A + \cos 12 A + \cos 10 A + 2(x+ \cos 4A + \cos 10 A + \cos 12 A)
= 3 + 2x + 3 (\cos 4A + \cos 12 A+ \cos 10 A)
Now \cos 2A + \cos 4A + \cos 6A + \cos 8A + \cos 10 A + \cos 12A = \dfrac{-1}{2}
So \cos 4A + \cos 12 A+ \cos 10 A = (\dfrac{- 1}{2}-x)
So 2x^2 = 3 + 2x + 3(\dfrac{-1}{2}- x)
Or 4x^2 = 6 + 4x -3 – 6x
Or 4x^2 + 2x -3 = 0
This has one positive solution \dfrac{\sqrt{13)}-1}{4} and one negative solution
As \cos2A + \cos6A + \cos8A = \cos 2A + \cos 6A – \cos 5A and \cos6 A > 0 and \cos 2A > \cos 5A so this is > 0
So this is \dfrac{\sqrt{13)}-1}{4}
I have solved at http://in.answers.yahoo.com/question/index;_ylt=ApwbfmdwbadqGq5DHY.KZsiRHQx.;_ylv=3?qid=20120607073236AAFCjFo
x = \cos2A + \cos6A + \cos8A \cdots(1)
by seeing that \sqrt{13} on right
square both sides of (1) to get
x^2 = \cos^2 2A + \cos^2 6A + \cos^2 8A + 2 \cos 2A \cos 6A + 2 \cos 2A \cos 8A + 2 \cos 6A \cos 8A
multiply by 2 to get
2 x^2 = 2 \cos^2 2A + 2 \cos^2 6A + 2 \cos^2 8A
+ 2(2 \cos 2A \cos 6A + 2 \cos 2A \cos 8A + 2 \cos 6A \cos 8A)
= \cos 4A + 1 + \cos 12 A + 1 + \cos 16 A + 1
+ 2( \cos 8A +\cos 4 A + \cos 10 A + \cos 6A + \cos 14 A + \cos 2 A)
= 3 + \cos 4A + \cos 12 A + \cos 16 A
+ 2 ( \cos 8A + \cos 6A + \cos 2A + \cos 4A + \cos 10 A + \cos 14A)
Now \cos 16 A = \cos 10 A as 26 A = 2\pi
\cos 14 A = \cos 12 A as 26 A = 2\pi
So we continue
= 3 + \cos 4A + \cos 12 A + \cos 10 A + 2(x+ \cos 4A + \cos 10 A + \cos 12 A)
= 3 + 2x + 3 (\cos 4A + \cos 12 A+ \cos 10 A)
Now \cos 2A + \cos 4A + \cos 6A + \cos 8A + \cos 10 A + \cos 12A = \dfrac{-1}{2}
So \cos 4A + \cos 12 A+ \cos 10 A = (\dfrac{- 1}{2}-x)
So 2x^2 = 3 + 2x + 3(\dfrac{-1}{2}- x)
Or 4x^2 = 6 + 4x -3 – 6x
Or 4x^2 + 2x -3 = 0
This has one positive solution \dfrac{\sqrt{13)}-1}{4} and one negative solution
As \cos2A + \cos6A + \cos8A = \cos 2A + \cos 6A – \cos 5A and \cos6 A > 0 and \cos 2A > \cos 5A so this is > 0
So this is \dfrac{\sqrt{13)}-1}{4}
I have solved at http://in.answers.yahoo.com/question/index;_ylt=ApwbfmdwbadqGq5DHY.KZsiRHQx.;_ylv=3?qid=20120607073236AAFCjFo
Saturday, December 26, 2015
2105/111) Given 4 positive integers a,b,c and d such that a^5=b^4, c^3=d^2 and c−a=19 what is d−b
as
c^3 = d^2 so c will be a square let c = x^2
as a^5 = b^4 so a = y^4
now
c-a = 19
=> x^2 - y^4 = 19
=> (x-y^2)(x+y^2) = 19
hence x - y^2 =1 and x+y^2 = 19 as 19 is a prime
so x = 10 and y = 3
so a = y^4 or a^5 = y^20 = b^ 4 or b= y^5 = 243
c= x^2 => c= 100 and hence d^2 = 10^6 and so d = 1000
d-b = 1000 - 243 = 757
as a^5 = b^4 so a = y^4
now
c-a = 19
=> x^2 - y^4 = 19
=> (x-y^2)(x+y^2) = 19
hence x - y^2 =1 and x+y^2 = 19 as 19 is a prime
so x = 10 and y = 3
so a = y^4 or a^5 = y^20 = b^ 4 or b= y^5 = 243
c= x^2 => c= 100 and hence d^2 = 10^6 and so d = 1000
d-b = 1000 - 243 = 757
2015/110) If 'a' and 'b' are the roots of x^2-3x+1=0 then
find the value of \frac{a^{2014} + b^{2014} + a^{2016} + b^{2016}}{ a^{2015} + b^{2015}}
Solution
a
is root of x^2 – 3x + 1=0
so
a^2 - 3a + 1 = 0
or
a^2
+ 1 = 3a
so
\dfrac{a^{2014}
+ a^{2016}}{a^{2015}} = \dfrac{1+a^2}{a} = 3 \cdots(1)
Similarly
\dfrac{b^{2014}
+ b^{2016}}{b^{2015}} = \dfrac{1+b^2}{b} = 3 \cdots(2)
using
if
\dfrac{x}{y} = \dfrac{z}{w} then both are \dfrac{x+z}{y+w}
we
get
\dfrac{a^{2014}
+ b^{2014} + a ^{2016} + b^{2016}}{a^{2015} + b^{2015}} = 3
2015/109) A triangle with sides 10, 24, and 26 is inscribed in a circle. What is the radius of the circle?
This
is a right angled triangle because 10^2 + 24^2 = 26^2 ( as u can
check)
Therefore the hypotneuse forms the diameter and therefore the radius is \frac{26}{2} =13
Therefore the hypotneuse forms the diameter and therefore the radius is \frac{26}{2} =13
Thursday, December 24, 2015
2015/108) If a + b = 1 and a^2 + b^2 = 2 what is the value of a^3 + b^3 ?
a+b
=1 \cdots(1)
a^2+b^2 = 2 \cdots(2)
from 1st we get
(a+b)^2 = a^2 +b^2 + 2ab = 2 + 2ab = 1
or ab = \dfrac{- 1}{2}
a^2+b^2 = 2 \cdots(2)
from 1st we get
(a+b)^2 = a^2 +b^2 + 2ab = 2 + 2ab = 1
or ab = \dfrac{- 1}{2}
hence
a^3+b^3 = (a+b)^3 - 3ab(a+b) = 1 - 3 * \dfrac{-1}{2} * 1 = \dfrac{5}{2}
a^3+b^3 = (a+b)^3 - 3ab(a+b) = 1 - 3 * \dfrac{-1}{2} * 1 = \dfrac{5}{2}
2015/107) find the sum of \frac{1}{3}+\frac{4}{9}+\frac{7}{27}+\frac{10}{81}+\cdots.
The
nth term = \dfrac{3n+1}{3^{n+1}} n is from 0 to infinite
= \dfrac{n}{3^n}+ \dfrac{1}{3}\cdot\dfrac{1}{3^n}
The second term is GP and the sum upto infinite terms is \dfrac{1}{3}\cdot\dfrac{1}{1-\frac{1}{3}} = \dfrac{1}{2}
let f(x) = 1 + x + x^2 + \cdots = \dfrac{1}{1-x}
then differentiate both sides wrt x to get
f'(x) = 1 + 2x + 3x^2 + \cdots. = \dfrac{1}{(1-x)^2}
multiply by x to get
xf'(x) = x + 2x^2 + 3x^3 \cdots = \dfrac{x}{(1-x)^2}
x = \dfrac{1}{3} gives the 1st sum as \dfrac{\frac{1}{3}}{(\frac{2}{3})^2}= \dfrac{9}{4}\cdot\dfrac{1}{3} = \dfrac{3}{4}
so sum = \dfrac{3}{4}+ \dfrac{1}{2} = \dfrac{5}{4}
= \dfrac{n}{3^n}+ \dfrac{1}{3}\cdot\dfrac{1}{3^n}
The second term is GP and the sum upto infinite terms is \dfrac{1}{3}\cdot\dfrac{1}{1-\frac{1}{3}} = \dfrac{1}{2}
let f(x) = 1 + x + x^2 + \cdots = \dfrac{1}{1-x}
then differentiate both sides wrt x to get
f'(x) = 1 + 2x + 3x^2 + \cdots. = \dfrac{1}{(1-x)^2}
multiply by x to get
xf'(x) = x + 2x^2 + 3x^3 \cdots = \dfrac{x}{(1-x)^2}
x = \dfrac{1}{3} gives the 1st sum as \dfrac{\frac{1}{3}}{(\frac{2}{3})^2}= \dfrac{9}{4}\cdot\dfrac{1}{3} = \dfrac{3}{4}
so sum = \dfrac{3}{4}+ \dfrac{1}{2} = \dfrac{5}{4}
Sunday, November 29, 2015
2015/106) Factorize: 2x^2-5xy-3y^2+3x+19y-20
The
factor is of the form (ax+by+c)(dx+ey+f)
2f+e = 3, f- 3e = 19 and ef = - 20
solving 1st 2 equations we get e = -5 and f = 3 and 3rd equation also meets criteria
so we get
2x^2-5xy-3y^2+3x+19y-20= (2x+y-5)(x-3y+4)
if
we ignore c and f and multiply we get
(ax+by)(dx+ey)=
adx^2 + (ae+bd)xy + bey^2
so
we can first factor $2x^2-5x-3y^2$ and then evaluate the other
parts
$2x^2-5xy-3y^2=
(2x+y)(x-3y)$ factored by quadratic method
so
$2x^2-5xy-3y^2+3x+19y-20=
(2x+y+e)(x-3y+f)$
$= 2x^2-3y^2-5xy+(2f+e)x + (f-3e)y + ef$
Comparing
coefficients of x , y and constant separately we get2f+e = 3, f- 3e = 19 and ef = - 20
solving 1st 2 equations we get e = -5 and f = 3 and 3rd equation also meets criteria
so we get
2x^2-5xy-3y^2+3x+19y-20= (2x+y-5)(x-3y+4)
Tuesday, November 17, 2015
2015/105) if a=xy^2+yz^2+zx^2 and b=x^2y+y^2z+z^2x then express (x^3-y^3)(y^3-z^3)(z^3-x^3) in terms of a and b
(x^3-y^3)(y^3-z^3)(z^3-x^3)
= (x^3-y^3)(y^3z^3-y^3x^3-z^6+z^3x^3)
=x^3y^3z^3-y^3x^6-z^6x^3+z^3x^6-y^6z^3+y^6x^3+y^3z^6-x^3z^3x^3
= -y^3x^6-z^6x^3+z^3x^6-y^6z^3+y^6x^3+y^3z^6
= (z^3x^6+y^3 z^6 + x^3y^6) - (y^3x^6 + x^3z^6 + y^6z^3)
HENCE
(x^3-y^3)(y^3-z^3)^(z^3-x^3)
= ((xy^2)^3 + (yz^2)^3+(zx^2)^3) - ((x^2y)^3 +(y^2z)^3 + (z^2x)^3)\cdots(1)
we have
a^3+b^3 + c^3 = (a+b+c)^3 - 3(a+b)(b+c)(c+a)
so ((xy^2)^3 + (yz^2)^3+(zx^2)^3) = (xy^2+yz^2+zx^2)^3- 3(xy^2+yz^2)(yz^2+zx^2)(zx^2+xy^2)
= (xy^2+yz^2+zx^2) - 3y(xy+z^2)z(x^2+yz)x(xz+y^2)
= b^2-3xyz(x^2+yz)(y^2+xz)(z^2+xy)\cdots(2)
similarly
((x^2y)^3 + (y^2z)^3+(z^2x)^3) =a^2-3xyz(x^2+yz)(y^2+xz)(z^2+xy)\cdots(3)
from (1), (2) and (3) we get
(x^3-y^3)(y^3-z^3)^(z^3-x^3))=b^3 - a^3
= (x^3-y^3)(y^3z^3-y^3x^3-z^6+z^3x^3)
=x^3y^3z^3-y^3x^6-z^6x^3+z^3x^6-y^6z^3+y^6x^3+y^3z^6-x^3z^3x^3
= -y^3x^6-z^6x^3+z^3x^6-y^6z^3+y^6x^3+y^3z^6
= (z^3x^6+y^3 z^6 + x^3y^6) - (y^3x^6 + x^3z^6 + y^6z^3)
HENCE
(x^3-y^3)(y^3-z^3)^(z^3-x^3)
= ((xy^2)^3 + (yz^2)^3+(zx^2)^3) - ((x^2y)^3 +(y^2z)^3 + (z^2x)^3)\cdots(1)
we have
a^3+b^3 + c^3 = (a+b+c)^3 - 3(a+b)(b+c)(c+a)
so ((xy^2)^3 + (yz^2)^3+(zx^2)^3) = (xy^2+yz^2+zx^2)^3- 3(xy^2+yz^2)(yz^2+zx^2)(zx^2+xy^2)
= (xy^2+yz^2+zx^2) - 3y(xy+z^2)z(x^2+yz)x(xz+y^2)
= b^2-3xyz(x^2+yz)(y^2+xz)(z^2+xy)\cdots(2)
similarly
((x^2y)^3 + (y^2z)^3+(z^2x)^3) =a^2-3xyz(x^2+yz)(y^2+xz)(z^2+xy)\cdots(3)
from (1), (2) and (3) we get
(x^3-y^3)(y^3-z^3)^(z^3-x^3))=b^3 - a^3
2015/104) Solve x^x^x^x^ to the infinity=10
x^x^x^x^
to the infinity=10
so x^{10} = 10
x = \sqrt[10]{10}
so x^{10} = 10
x = \sqrt[10]{10}
Sunday, November 8, 2015
2015/103) If xy + yz + zx =0 then \dfrac{1}{x^2 - yz} + \dfrac{1}{y^2 - zx} +\dfrac{1}{z^2 - xy} is equal to
xy + yz + zx = 0
so yz = -x(y+z)
x^2-yz = x(x+y+z)
so \dfrac{1}{x^2-yz} = \dfrac{1}{x(x+y+z)}
similarly\dfrac{1}{y^2-xz} = \dfrac{1}{y(x+y+z)}
and
\dfrac{1}{z^2-xy} = \dfrac{1}{z(x+y+z)}
adding all 3 we get your expression
\dfrac{1}{x^2 - yz} + \dfrac{1}{y^2 - zx} +1\dfrac{1}{z^2 - xy} = \dfrac{1}{x+y+z}(\dfrac{1}{x}+\dfrac{1}{y} + \dfrac{1}{z})
\dfrac{1}{x} +\dfrac{1}{y} + \dfrac{1}{z} = \dfrac{yz+xz+xy}{xyz} = 0
so
\dfrac{1}{x^2 - yz} + \dfrac{1}{y^2 - zx} +\dfrac{1}{z^2 - xy} = 0
so yz = -x(y+z)
x^2-yz = x(x+y+z)
so \dfrac{1}{x^2-yz} = \dfrac{1}{x(x+y+z)}
similarly\dfrac{1}{y^2-xz} = \dfrac{1}{y(x+y+z)}
and
\dfrac{1}{z^2-xy} = \dfrac{1}{z(x+y+z)}
adding all 3 we get your expression
\dfrac{1}{x^2 - yz} + \dfrac{1}{y^2 - zx} +1\dfrac{1}{z^2 - xy} = \dfrac{1}{x+y+z}(\dfrac{1}{x}+\dfrac{1}{y} + \dfrac{1}{z})
\dfrac{1}{x} +\dfrac{1}{y} + \dfrac{1}{z} = \dfrac{yz+xz+xy}{xyz} = 0
so
\dfrac{1}{x^2 - yz} + \dfrac{1}{y^2 - zx} +\dfrac{1}{z^2 - xy} = 0
Thursday, November 5, 2015
2015/102) Two roots of the polynomial x^3 + ax^2 + 15x -7 = 0 are equal and rational. Find "a"
If
2 roots are rational then 3rd must be rational.
possible roots are -7 , -1, 1, 7
now product of 2 roots (as same) so roots shall be +1 or - 1 as 7 or -7 cannot be a double root
so 3rd root has to be 7 ( as product has to be +ve)
so f(x) = x^3 + ax^2 + 15x -7 = 0 = f(7)
or 343 + 49 a + 105 - 7 = 0
or a = 9
check:
x^3 - 9x^2 + 15x - 7 = (x-1)^2(x-7)
possible roots are -7 , -1, 1, 7
now product of 2 roots (as same) so roots shall be +1 or - 1 as 7 or -7 cannot be a double root
so 3rd root has to be 7 ( as product has to be +ve)
so f(x) = x^3 + ax^2 + 15x -7 = 0 = f(7)
or 343 + 49 a + 105 - 7 = 0
or a = 9
check:
x^3 - 9x^2 + 15x - 7 = (x-1)^2(x-7)
2015/101) factor a(b^2+c^2-a^2) + ...(the full question below)
a(b^2+c^2-a^2) + b(c^2+a^2-b^2) + c(a^2+b^2-c^2) - 2abc
Solution
a(b^2+c^2-a^2) + b(c^2+a^2-b^2) + c(a^2+b^2-c^2) - 2abc
=(ab^2+ac^2-a^3 + bc^2+ a^2b -b^3) + c(a^2+b^2-c^2) - 2abc
= (c^2(a + b) + a(b^2-a^2) + b(a^2-b^2) + c(a^2+b^2-c^2) - 2abc
= (c^2(a+b) + (a-b) (b^2 - a^)) + c(a^2+b^2-c^2) - 2abc
= (c^2(a+b) - (a-b)^2(a+b))+ c(a^2+b^2-c^2) - 2abc
= (a+b)(c^2 - (a-b)^2) + c(a^2 + b^2 -2ab -c^2)
= (a+b)(c^2 - (a-b)^2) + c((a-b)^2 -c^2)
= (c^2 - (a-b)^2)((a+b)-c)
= (c+a-b)(c-a+b)(a+b-c)
=(a+b-c)(b+c-a)(c+a-b)
Solution
a(b^2+c^2-a^2) + b(c^2+a^2-b^2) + c(a^2+b^2-c^2) - 2abc
=(ab^2+ac^2-a^3 + bc^2+ a^2b -b^3) + c(a^2+b^2-c^2) - 2abc
= (c^2(a + b) + a(b^2-a^2) + b(a^2-b^2) + c(a^2+b^2-c^2) - 2abc
= (c^2(a+b) + (a-b) (b^2 - a^)) + c(a^2+b^2-c^2) - 2abc
= (c^2(a+b) - (a-b)^2(a+b))+ c(a^2+b^2-c^2) - 2abc
= (a+b)(c^2 - (a-b)^2) + c(a^2 + b^2 -2ab -c^2)
= (a+b)(c^2 - (a-b)^2) + c((a-b)^2 -c^2)
= (c^2 - (a-b)^2)((a+b)-c)
= (c+a-b)(c-a+b)(a+b-c)
=(a+b-c)(b+c-a)(c+a-b)
Sunday, October 25, 2015
2015/100)n any triangle ABC, prove that
a^2(\cos^2 B - \cos^2 C) + b^2(\cos^2 C -\cos^2 A) + c^2(\cos^2 A - \cos^2 B) = 0
proof:
proof:
a^2(\cos^2
B - \cos^2 C) + b^2(\cos^2 C - \cos^2 A) + c^2(\cos^2 A - \cos^2 B)
= a^2(\sin^2 C - \sin^2 B) + b^2 (\sin^2 A - \sin^2 C) + c^2( \sin^2 B - \sin^2 A)
= a^2(\sin^2 C - \sin^2 B) + b^2 (\sin^2 A - \sin^2 C) + c^2( \sin^2 B - \sin^2 A)
using
law of sines we have
let
\dfrac{a}{\sin A} = \dfrac{b}{sin B} = \dfrac{c}{\sin C} = k (say)
we
get
a^2(\sin^2
C - \sin^2 B) + b^2 (\sin^2 A- \sin^2 C) + c^2( \sin^2 B - \sin^2 A)
=k^2
\sin ^2 A(\sin^2 C - \sin^2 B) + k^2 \sin ^2 B (\sin^2 A -\sin^2 C) + k^2
\sin ^2 C( \sin^2 B - \sin^2 A)
=
k^2( \sin ^2 A \sin ^2 C – \sin ^2 A \sin ^2 B + \sin ^2 B \sin ^2 A –
\sin ^2B \sin^2 C + \sin ^2 C \sin ^2 B – \sin ^2C \sin ^2 A)
=
0
Saturday, October 24, 2015
21015/099) Solve the system of equations
a(b+c+d+e+f)=184
c(a+b+d+e+f)=301
e(a+b+c+d+f)=400
b(a+c+d+e+f)=225
d(a+b+c+e+f)=225
f(a+b+c+d+e)=525
Solution
We
note that all the rest are of the form n(g-n)
where g=a+b+c+d+e+f and observe that smaller the value, the smaller n and hence b = d
Factoring, we see that
a(g-a) = 2^2 * 3 * 7
b(g-b) = d(g-d) = 3^2 * 5*2
e(g-e) = 2^4 * 5^2
f(g-f) = 3 * 5^2 * 7
and
a < b = d < e < f
Because b and d must be greater than a,
where g=a+b+c+d+e+f and observe that smaller the value, the smaller n and hence b = d
Factoring, we see that
a(g-a) = 2^2 * 3 * 7
b(g-b) = d(g-d) = 3^2 * 5*2
e(g-e) = 2^4 * 5^2
f(g-f) = 3 * 5^2 * 7
and
a < b = d < e < f
Because b and d must be greater than a,
so
we have the set for a 2,3,4,7
b
= 3,5,
d=
3,5
e=
2,5,10
f
= 3,5,15 so on
This produces the solution
a=4, b=d=5, c=7, e=8, f=21
2015/098) Prove (4 \cos\, 20^\circ + 1) \tan 20^\circ = \sqrt3
we have tan\, 60^\circ – \tan\, 20^\circ
= \dfrac{\sin\, 60^\circ}{\cos\,60^\circ} – \dfrac{\sin\, 20^\circ}{\cos\,20^\circ}
= \dfrac{\sin\, 60 ^\circ\cos\, 20^\circ – \cos\, 60^\circ \sin\, 20^\circ}{\cos\, 60^\circ\, \cos\, 20^\circ}
= \dfrac{\sin\, 40^\circ}{\cos\, 60^\circ \cos\, 20^\circ}
= 2\dfrac{\sin\, 40^\circ}{\cos\, 20^\circ}
= 2 \dfrac{2 sin\, 20^\circ \cos\, 20^\circ}{\cos\, 20^\circ} = 4 \sin\, 20^\circ
hence 4\sin \, 20^\circ + \tan\, 20^\circ = \sqrt3
or 4 \cos\, 20^\circ \tan\, 20^\circ + \tan \,20^\circ = \sqrt3
or (4 \cos\, 20^\circ + 1) \tan\, 20^\circ = \sqrt3
= \dfrac{\sin\, 60^\circ}{\cos\,60^\circ} – \dfrac{\sin\, 20^\circ}{\cos\,20^\circ}
= \dfrac{\sin\, 60 ^\circ\cos\, 20^\circ – \cos\, 60^\circ \sin\, 20^\circ}{\cos\, 60^\circ\, \cos\, 20^\circ}
= \dfrac{\sin\, 40^\circ}{\cos\, 60^\circ \cos\, 20^\circ}
= 2\dfrac{\sin\, 40^\circ}{\cos\, 20^\circ}
= 2 \dfrac{2 sin\, 20^\circ \cos\, 20^\circ}{\cos\, 20^\circ} = 4 \sin\, 20^\circ
hence 4\sin \, 20^\circ + \tan\, 20^\circ = \sqrt3
or 4 \cos\, 20^\circ \tan\, 20^\circ + \tan \,20^\circ = \sqrt3
or (4 \cos\, 20^\circ + 1) \tan\, 20^\circ = \sqrt3
Thursday, October 22, 2015
2015/097) Find the equation of the line through the point (3,5) that cuts off the least area from the first quadrant.
Let
the slope of line be m
clearly m is -ve as if m is positive or zero then it shall not cut x and y both in 1st quadrant
so the equation of line is
y-5 = m(x-3)
as it goes via (3,5)
now x intercept when x = 0 is y=5-3m
y intercept when y = 0 is given by x = \dfrac{3m-5}{m}
so area of the triangle in 1st quadrant is \dfrac{xy}{2}
so we need to minimize xy = \dfrac{(3m-5)^2}{m}
let m = - p where p > 0
xy=\dfrac{(5+3p)^2}{p}=(\frac{5}{\sqrt{p}}+3\sqrt{p})^2
or xy=(\frac{5}{\sqrt{p}}-3\sqrt{p})^2+60
clearly it is lowest when \frac{5}{\sqrt{p}}-3\sqrt{p}=0
so p=\frac{5}{3}
so equation of line is
y=5-\frac{5}{3}(x-3)
or 3x+5y=30
Ths problem appeared as Problem of the week in http://mathhelpboards.com/potw-university-students-34/problem-week-115-june-9th-2014-a-10908.html
clearly m is -ve as if m is positive or zero then it shall not cut x and y both in 1st quadrant
so the equation of line is
y-5 = m(x-3)
as it goes via (3,5)
now x intercept when x = 0 is y=5-3m
y intercept when y = 0 is given by x = \dfrac{3m-5}{m}
so area of the triangle in 1st quadrant is \dfrac{xy}{2}
so we need to minimize xy = \dfrac{(3m-5)^2}{m}
let m = - p where p > 0
xy=\dfrac{(5+3p)^2}{p}=(\frac{5}{\sqrt{p}}+3\sqrt{p})^2
or xy=(\frac{5}{\sqrt{p}}-3\sqrt{p})^2+60
clearly it is lowest when \frac{5}{\sqrt{p}}-3\sqrt{p}=0
so p=\frac{5}{3}
so equation of line is
y=5-\frac{5}{3}(x-3)
or 3x+5y=30
Ths problem appeared as Problem of the week in http://mathhelpboards.com/potw-university-students-34/problem-week-115-june-9th-2014-a-10908.html
where
you can find some solution. I answered the question correctly but my
solution is not provided there.
Tuesday, October 20, 2015
2015/096) ax^2 + bx + c = 0 has imaginary roots and a + c \lt b then prove that 4a + c \lt 2b
f(x) = ax^2
+ bx + c has imaginary roots so this expression is positive or -ve
for all x
f(-1)=
a - b + c < 0 as a + c < b
so
f(-2)
= 4a - 2b +c < 0 or 4a + c < 2b
Tuesday, October 13, 2015
2015/095) If x^{a}= (x^\frac{b}{2}) (z^\frac{b}{2}) =z^c then a,b,c are in?
A) H.P, B) G.P, C) H.P ,D)non of these
we have x^a = z^c
so x =z^\frac{c}{a}\cdots(1)
further
x^{a-\frac{b}{2}}=z^{\frac{b}{2}}
or x^{2a-b} = z^{b}
from 1
z^{(2a-b)*^\frac{c}{a}} = z^{b}
or
(2a-b)c= ab
or
\dfrac{2}{b} = \dfrac{1}{a} + \dfrac{1}{c}
hence they are in HP
we have x^a = z^c
so x =z^\frac{c}{a}\cdots(1)
further
x^{a-\frac{b}{2}}=z^{\frac{b}{2}}
or x^{2a-b} = z^{b}
from 1
z^{(2a-b)*^\frac{c}{a}} = z^{b}
or
(2a-b)c= ab
or
\dfrac{2}{b} = \dfrac{1}{a} + \dfrac{1}{c}
hence they are in HP
Monday, October 12, 2015
2015/094) One roots of a quadratic equation ax^2+bx+c=0 is three times the other.
Prove that 3b^2=16ac
Solution
Solution
we
are given
ax^2
+ bx+ c = 0 \cdots(1)
let
the roots be t and 3t
so
we have (x-t)(x-3t) = 0
or
x^2 – 4tx + 3t^2 = 0\cdots(2)
the
roots of(1) and (2) are same so coefficients are proportionate
so
\dfrac{a}{1}
= \dfrac{-b}{4t} = \dfrac{c}{3t^2}
we
need to eliminate t
4at
= -b\cdots(3)
and
-b = \dfrac{4c}{3t}\cdots(4)
multiplying
(3) with (4) we get
b^2
= \dfrac{16ac}{3} or 3b^2 = 16ac
Saturday, October 3, 2015
2015/093) Show that \dfrac{\sec\,A +\tan\, A - 1}{\tan\, A- \sec\, A +1} = \dfrac{\cos\, A}{1-\sin\,A}
we have
\dfrac{\sec\,A +\tan\, A - 1}{\tan\, A- \sec\, A +1}
= \dfrac{\sec\,A +\tan\, A - (\sec^2A-\tan ^2 A}{\tan\, A- \sec\, A +1}
= \dfrac{\sec\,A +\tan\, A - (\sec\,A+\tan\, A)(\sec\,A-\tan\, A)}{\tan\, A- \sec\, A +1}
= \dfrac{(\sec\,A +\tan\, A)(1 - \sec\,A+\tan\, A)}{\tan\, A- \sec\, A +1}
= (\sec\,A +\tan\, A)
= \dfrac{1}{\cos\, A }+ \dfrac{\sin\, A}{\cos\, A }
= \dfrac{1+ \sin\, A}{\cos\, A }
= \dfrac{(1+ \sin\, A)(1-\sin\, A)}{\cos\, A(1-\sin\, A) }
= \dfrac{1-\sin^2A}{\cos\, A(1-\sin\, A) }
= \dfrac{\cos^2A}{\cos\, A(1-\sin\, A) }
= \dfrac{\cos\,A}{1-\sin\, A}
\dfrac{\sec\,A +\tan\, A - 1}{\tan\, A- \sec\, A +1}
= \dfrac{\sec\,A +\tan\, A - (\sec^2A-\tan ^2 A}{\tan\, A- \sec\, A +1}
= \dfrac{\sec\,A +\tan\, A - (\sec\,A+\tan\, A)(\sec\,A-\tan\, A)}{\tan\, A- \sec\, A +1}
= \dfrac{(\sec\,A +\tan\, A)(1 - \sec\,A+\tan\, A)}{\tan\, A- \sec\, A +1}
= (\sec\,A +\tan\, A)
= \dfrac{1}{\cos\, A }+ \dfrac{\sin\, A}{\cos\, A }
= \dfrac{1+ \sin\, A}{\cos\, A }
= \dfrac{(1+ \sin\, A)(1-\sin\, A)}{\cos\, A(1-\sin\, A) }
= \dfrac{1-\sin^2A}{\cos\, A(1-\sin\, A) }
= \dfrac{\cos^2A}{\cos\, A(1-\sin\, A) }
= \dfrac{\cos\,A}{1-\sin\, A}
2015/092) Solve \dfrac{x-a}{b+c} + \dfrac{x-b}{a+c} + \dfrac{x-c}{a+b} = 3 given a,b,c positive
\dfrac{x-a}{b+c} + \dfrac{x-b}{a+c} + \dfrac{x-c}{a+b} = 3
or (\dfrac{x-a}{b+c}-1) + (\dfrac{x-b}{a+c}-1) + (\dfrac{x-c}{a+b}-1) =0
or \dfrac{x-a-b-c}{b+c} + \dfrac{x-b-a-c}{a+c} + \dfrac{x-c-a-b}{a+b} =0
or (x-a-b-c)(\dfrac{1}{b+c} + \dfrac{1}{a+c} + \dfrac{1}{a+b}) =0
so x-a-b-c) =0 or \dfrac{1}{b+c} + \dfrac{1}{a+c} + \dfrac{1}{a+b} =0
as a,b,c are positive so 2nd expression >0 and hence x = a+b+c
or (\dfrac{x-a}{b+c}-1) + (\dfrac{x-b}{a+c}-1) + (\dfrac{x-c}{a+b}-1) =0
or \dfrac{x-a-b-c}{b+c} + \dfrac{x-b-a-c}{a+c} + \dfrac{x-c-a-b}{a+b} =0
or (x-a-b-c)(\dfrac{1}{b+c} + \dfrac{1}{a+c} + \dfrac{1}{a+b}) =0
so x-a-b-c) =0 or \dfrac{1}{b+c} + \dfrac{1}{a+c} + \dfrac{1}{a+b} =0
as a,b,c are positive so 2nd expression >0 and hence x = a+b+c
2015/091) Let p be a prime number. Prove that 6[(p-4)!] = 1 (mod p )
we
have 6 = 2 * 3
p is prime
now (p-2) mod p = -2
(p-3) mod p = - 3
so 6(p-4)! = - (p-2)(p-3) (p-1)(p-4)! = - (p-1)!
so 6(p-4)! mod p = - 1(p-1)! mod p = -1 * (-1) = 1 mod p
p is prime
now (p-2) mod p = -2
(p-3) mod p = - 3
so 6(p-4)! = - (p-2)(p-3) (p-1)(p-4)! = - (p-1)!
so 6(p-4)! mod p = - 1(p-1)! mod p = -1 * (-1) = 1 mod p
Friday, October 2, 2015
2015/090) Find \frac{1+a}{1-a} if a = \cos\beta + i\sin\beta.
a = \cos\beta + i\sin\beta
so
1+ a = 1+ \cos\beta + i\sin\beta= 2\cos^2\frac{\beta}{2}+2i\cos\frac{\beta}{2}\sin\frac{\beta}{2}= 2 \cos\frac{\beta}{2}(\cos\frac{\beta}{2} +i\sin\frac{\beta}{2})
further
1 - a = 1 - \cos\beta -i\sin\beta = ( 2 \sin ^2 \frac{\beta}{2} - 2 i \cos\frac{\beta}{2} \sin\frac{\beta}{2}) = 2 \sin \frac{\beta}{2}(\sin \frac{\beta}{2}- i \cos\frac{\beta}{2})
= - 2i \sin \frac{\beta}{2}(\cos\frac{\beta}{2} + i \sin \frac{\beta}{2})
so \frac{1+a}{1-a}= \frac{\cos\frac{\beta}{2}}{- i sin \frac{\beta}{2}} = i\cot \frac{\beta}{2}
so
1+ a = 1+ \cos\beta + i\sin\beta= 2\cos^2\frac{\beta}{2}+2i\cos\frac{\beta}{2}\sin\frac{\beta}{2}= 2 \cos\frac{\beta}{2}(\cos\frac{\beta}{2} +i\sin\frac{\beta}{2})
further
1 - a = 1 - \cos\beta -i\sin\beta = ( 2 \sin ^2 \frac{\beta}{2} - 2 i \cos\frac{\beta}{2} \sin\frac{\beta}{2}) = 2 \sin \frac{\beta}{2}(\sin \frac{\beta}{2}- i \cos\frac{\beta}{2})
= - 2i \sin \frac{\beta}{2}(\cos\frac{\beta}{2} + i \sin \frac{\beta}{2})
so \frac{1+a}{1-a}= \frac{\cos\frac{\beta}{2}}{- i sin \frac{\beta}{2}} = i\cot \frac{\beta}{2}
Tuesday, September 29, 2015
2015/089) lf z= \frac{a+3i}{2+ai} , a is real.
Show that there is only one value of a for which arg z = \frac{pi}{4} and find it
Solution
arg(z) = \frac{pi}{4}
z must be located at first quadrant...
now \frac{a+3i}{2+ai} = \frac{(a+3i)(2-ai)}{(4+a^2)}
or a^2 + 5a – 6 = 0
(a+6)(a-1) = 0
a = -6 or 1
a = -6 means arg(z) = \frac{3pi}{4} and hence this is invalid value and so a = 1 is the correct ans.
Refer to https://in.answers.yahoo.com/question/index?qid=20111204094456AAQhinr
Solution
arg(z) = \frac{pi}{4}
z must be located at first quadrant...
now \frac{a+3i}{2+ai} = \frac{(a+3i)(2-ai)}{(4+a^2)}
=
\dfrac{5a + (6-a^2)i}{4+ a^2}
Arg z = 1 when 5a = 6- a^2or a^2 + 5a – 6 = 0
(a+6)(a-1) = 0
a = -6 or 1
a = -6 means arg(z) = \frac{3pi}{4} and hence this is invalid value and so a = 1 is the correct ans.
Refer to https://in.answers.yahoo.com/question/index?qid=20111204094456AAQhinr
Sunday, September 27, 2015
2015/088)If a,b,c are real and distinct, then show that
a^2(1+b^2)+b^2(1+c^2)+c^2(1+a^2)\gt6abc
taking
6abc to the left and reordering we get
(a^2b^2-2bac
+ c^2) + (a^2c^2-2abc + b^2) + (b ^2c^2- 2abc + a^2)
=
(ab-c)^2 + (ac-b)^2 + (bc-a)^2 \ge 0
the
expression can be zero only if ab= c, ac = b , bc = a or abc = 1 or
zero
if
a,b,c all are different then above cannot be zero
2015/087) If two vertices of an equilateral triangle are (0,0),(3,\sqrt{3}) then find the third vertex
one
point is origin (0,0) and another is (3,\sqrt3)
the length of the side = \sqrt{12} = 2\sqrt3
So
it is at 30 degrees with x axis.
For
it to be equilateral triangle the 2nd
side shall be at 60 degrees more or 60 degrees less that is there are 2 triangle one is at 30 degrees more that is at 90 degrees which gives co-ordinates (0, 2\sqrt3)
another triangle at 30 degrees less that is at -30 degrees which gives co-ordinates (3, -\sqrt{3})
Friday, September 25, 2015
2015/086) Let S=y^2+20y+12 y is a positive integer.
What is the sum of all possible values of y for which S is a perfect square.
Solution
Solution
let
S = x^2
so
x^2 = (y+10)^2 – 88
or
88 = (y+10)^2-x^2 = (y+10 + x) (y+10-x)
both
the terms on RHS has to be even as one add and one even shall give
fractional x and y
so
(y+10+x) = 44, (y + 10 – x) = 2 giving y = 13, x = 21
or
(y+10+x) = 22, (y+10-x) = 4 giving y=3 , x = 9
so
sum of all possible values of y = 16
Tuesday, September 22, 2015
2015/085) Prove that
(x+y)^3 + (y+z)^3 + (z+x)^3 -3(x+y)(y+z)(z+x)=2(x^3+y^3+z^3 – 3xyz)
Solution
knowing
a^3+b^3 + c^3 – 3abc = \frac{1}{2}(a+b+c)((a-b)^2 + (b-c)^2 + (c-a)^2)\cdots (1)
putting a = x + y , b= y + z, c= z+x we get
Solution
knowing
a^3+b^3 + c^3 – 3abc = \frac{1}{2}(a+b+c)((a-b)^2 + (b-c)^2 + (c-a)^2)\cdots (1)
putting a = x + y , b= y + z, c= z+x we get
(x+y)^3 + (y+z)^3 + (z+x)^3
-3(x+y)(y+z)(z+x)
= \frac{1}{2}(2x+2y+ 2z)((x-z)^2 + (y-x)^2 +
(z-y)^2)
= 2 * \frac{1}{2}(x+y+z)((x-y)^2+(y-z)^2 +
(z-x)^2)
= 2(x^3+y^3+z^3 – 3xyz) using (1)
Saturday, September 19, 2015
2015/084) Prove that the locus of the center of the circle
\frac{1}{2}(x^2 + y^2) + x \cos(\theta) + y \sin(\theta) - 4 = 0 is x^2 + y^2 = 1
Solution
we
have (x^2 + 2 x \cos \theta) + (y^2 + 2y \sin \theta ) = 8
or (x^2 + 2 x \cos \theta+1) + (y^2 + 2y \sin \theta+ 1 ) = 10
or ( x + \cos \theta)^2 + (y + \sin \theta ) ^2 = 10
So the locus of the centre
x = - \cos \theta
y = - \sin \theta
to eliminate \theta
or x^2 + y ^2 = 1
above is the locus
so above is true
or (x^2 + 2 x \cos \theta+1) + (y^2 + 2y \sin \theta+ 1 ) = 10
or ( x + \cos \theta)^2 + (y + \sin \theta ) ^2 = 10
So the locus of the centre
x = - \cos \theta
y = - \sin \theta
to eliminate \theta
or x^2 + y ^2 = 1
above is the locus
so above is true
Monday, August 17, 2015
2015/083) The L.C.M and H.C.F of two numbers are 1760 and 32 respectively. If one of the number is 160 find the other.
1760
= 160 * 11 = 32 * 5 * 11
160 = 32 * 5
32 is the HCF and and one number is 32 * 5
the other number has to be 32m when 32m* 5 = 1760 and m is coprime to 5
so m = 11
so other number = 32 * 11 = 352
160 = 32 * 5
32 is the HCF and and one number is 32 * 5
the other number has to be 32m when 32m* 5 = 1760 and m is coprime to 5
so m = 11
so other number = 32 * 11 = 352
This
can also be solved by using the rule that product of HCF and LCM is
the product of numbers
2015/082) Evaluate (\dfrac{n}{n+1})^{1 + n} as n\rightarrow \infty
(\dfrac{n}{n+1})^{1 + n}
Let's remember one thing first: lim x\rightarrow\infty (1 + \frac{r}{x})^x = e^r
(\dfrac{n}{n+1})^{1 + n}
Let's remember one thing first: lim x\rightarrow\infty (1 + \frac{r}{x})^x = e^r
(\dfrac{n}{n+1})^{1 + n}
= (1- \dfrac{1}{n+1})^{1 + n}
substitute
x = n + 1
Now, as n goes to infinity, then n + 1 will also go to infinity, and x will go to infinity
lim n\rightarrow\infty (1 - \dfrac{1}{n + 1})^{n + 1}
Now, as n goes to infinity, then n + 1 will also go to infinity, and x will go to infinity
lim n\rightarrow\infty (1 - \dfrac{1}{n + 1})^{n + 1}
= lim x\rightarrow\infty (1 -
\dfrac{1}{x})^x
Which is e^{-1}, or \dfrac{1}{e}
2015/081) If a(y + z) = x, b(z + x) = y, c(x + y) = z show that bc + ca + ab + 2abc = 1
a(y
+ z) = x
Hence
\dfrac{1}{a} = \dfrac{y+z}{x}
add
1 to both sides
\dfrac{a+1}{a}
= \dfrac{x + y +z}{x}
so
\dfrac{a}{a+1} = \dfrac{x}{x+y+z}
similarly
\dfrac{b}{b+1}
= \dfrac{y}{x+y+z}
\dfrac{c}{c+1}
= \dfrac{z}{x+y+z}
adding
the above we get
\dfrac{a}{a+1}+\dfrac{b}{b+1} +\dfrac{c}{c+1}= 1
or
a(b+1)(c+1) + b(a+1)(c+1) + c(a+1)(b+1) = (1+a)(1+b)(1+c)
or
(abc + ab + ac + a) + (abc + bc + ca + b) + (abc + ca + cb + c) = 1
+ a + b+ c + ab + bc+ ca +abc
hence
2abc + ab + bc + ca = 1Saturday, August 15, 2015
2015/080) If log_4 5 =a and log_5 6 =b, then log_3 2 =
From
the given condition
so
3 *2 = 2^{2ab}
so
3 = \frac{2^{2ab}}{2} = 2^{2ab-1}
or 2 = 3^{\frac{1}{2ab-1}}
or 2 = 3^{\frac{1}{2ab-1}}
2015/079) if a^{x-1} = bc, b^{y-1} = ca, c^{z-1} = ab show that xy + yz + zx = xyz
a^{x-1}
= bc
hence
a^x = abc
or a = (abc)^{\frac{1}{x}}\cdots (1)
similarly
b = (abc)^{\frac{1}{y}}\cdots (2)
c = (abc)^{\frac{1}{z}}\cdots (3)
hence abc = (abc)^{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}
hence
\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1
or
yz + zx + xy = xyz
proved
Saturday, August 8, 2015
2015/078) Find the equation of the sphere passing (a,0,0), (0,b,0), (0,0,c) and (0,0,0)
the
general equation of sphere
x^2+y^2+z^2+mx +ny + rz = p^2
as it passes through (0,0,0) put (x,y,z) = (0,0,0) to get p^2 = 0 or p = 0
as it passes through (a,0,0) put (x,y,z) = (a,0,0) to get a^2 + ma = 0 or m = -a
similarly n = -b and r = -c and we get equation as
2015/077) Find the formula for the number pattern : 2,5,10,17 \cdots
The
1st order difference 3,5,7
The second order difference 2,2,2,
So the term is quadratic
The second order difference 2,2,2,
So the term is quadratic
t_n = an^2 + bn + c
put n = 1 to get
a + b+ c = 2\cdots(1)
put n =2 to get
4a + 2b + c = 5 \cdots(2)
put n = 3 to get
9a + 3b + c = 10 \cdots(3)
subtract (1) from (2) to get
3a + b = 3 \cdots(4)
subtract (2) from (3) to get
subtract (2) from (3) to get
5a + b = 5 \cdots(5)
from (4) and (5) 2a = 2 or a = 1 so b = 0 and hence c = 1
so
t_n = n^2 + 1
Sunday, August 2, 2015
2015/076) Prove that: \tan\,x\tan(60^\circ-x)\tan(60^\circ+x) = \tan3x
LHS = \tan\,x\tan(60^\circ-x)\tan(60^\circ+x)
= \tan\,x\dfrac{\tan\,60^\circ-\tan\,x}{1+\tan\,60^\circ \tan\,x}\dfrac{\tan\,60^\circ+\tan\,x}{1-\tan\,60^\circ \tan\,x}
= \tan\,x\dfrac{\tan^260^\circ-\tan^2x}{1- \tan^260^\circ \tan^2x}
= \tan\,x\dfrac{3-\tan^2x}{1- 3 \tan^2x}
= \dfrac{3\tan\,x-\tan^3x}{1- 3 \tan^2x}
= \tan 3x = RHS
= \tan\,x\dfrac{\tan\,60^\circ-\tan\,x}{1+\tan\,60^\circ \tan\,x}\dfrac{\tan\,60^\circ+\tan\,x}{1-\tan\,60^\circ \tan\,x}
= \tan\,x\dfrac{\tan^260^\circ-\tan^2x}{1- \tan^260^\circ \tan^2x}
= \tan\,x\dfrac{3-\tan^2x}{1- 3 \tan^2x}
= \dfrac{3\tan\,x-\tan^3x}{1- 3 \tan^2x}
= \tan 3x = RHS
Saturday, August 1, 2015
2015/075) find x^{63} + x^{44} + x^{37} + x^{31} + x^{26} + x^9 +6
what is the value of the above expression for (x + \dfrac{1}{x})^2 = 3
we have
x^2 + 2 + \dfrac{1}{x^2}= 3
or x^4 -x^2 + 1=0
or (x^4-x^2+1) (x^2+1)= 0 as x^2+1 is not zero
or x^6+1=0
so x^6= - 1 and x^{12} = 1
so x^{63} + x^{44} + x^{37}+ x^{31} + x^{26} + x^9 +6
= x^3 + x^8 + x + x^7 + x^2 + x^9 + 6 taking mod 12 of exponent
= x^3(x^6+1) + x^2(x^6+1) + x ( 1 + x^6) + 6
= 6
This I have picked from https://in.answers.yahoo.com/question/index?qid=20150801013839AAEmdz0
we have
x^2 + 2 + \dfrac{1}{x^2}= 3
or x^4 -x^2 + 1=0
or (x^4-x^2+1) (x^2+1)= 0 as x^2+1 is not zero
or x^6+1=0
so x^6= - 1 and x^{12} = 1
so x^{63} + x^{44} + x^{37}+ x^{31} + x^{26} + x^9 +6
= x^3 + x^8 + x + x^7 + x^2 + x^9 + 6 taking mod 12 of exponent
= x^3(x^6+1) + x^2(x^6+1) + x ( 1 + x^6) + 6
= 6
This I have picked from https://in.answers.yahoo.com/question/index?qid=20150801013839AAEmdz0
2015/074) If ax^2+bx+c=0 has complex roots and a + c \lt b, then prove 4a+c\lt 2b
because
f(x) = ax^2+bx+c=0 has complex roots so this is positive for all x or
-ve for all x
f(-1) = a – b + c
from given condition a + c – b \lt 0 so f(-1) \lt 0
so f(-2) = 4a – 2b + c \lt 0 or 4a + c \lt 2b
proved
f(-1) = a – b + c
from given condition a + c – b \lt 0 so f(-1) \lt 0
so f(-2) = 4a – 2b + c \lt 0 or 4a + c \lt 2b
proved
2015/073) Show that the following is true for all real values of x.
\dfrac{a^2(x-b)(x-c)}{(a-b)(a-c)
} + \dfrac{b^2(x-c)(x-a)}{(b-c)(b-a)} + \dfrac{c^2(x-a)(x-b)}{(c-a)(c-b)} = x^2
Solution 2015/073)
This
can be done in 2 ways
method
1
expand
=
\dfrac{a^2(x-b)(x-c)}{(a-b)(a-c)}
= \dfrac{-a^2(x-b)(x-c)}{(a-b)(c-a)}
= \dfrac{-a^2(x-b)(x-c)}{(a-b)(c-a)}
=\dfrac{-a^2(x-b)(x-c)(b-c)}{(a-b)(b-c)(c-a)}
=
\dfrac{x^2(- a^2(b-c)) +xa^2(b^2-c^2) -a^2bc(b-c)}{(a-b)(b-c)(c-a)}
similarly
we have 2nd
term
=
\dfrac{b^2(x-c)(x-a)}{(b-c)(b-a)}
=
\dfrac{x^2(- b^2(c-a)) +xb^2(c^2-a^2) -b^2ca(c-a)}{(a-b)(b-c)(c-a)}
3rd
term
=
\dfrac{c^2(x-a)(x-b)}{(c-a)(c-b)}
=
\dfrac{x^2(- c^2(a-b)) +x(c^2(a^2-b^2) -c^ab(a-b)}{(a-b)(b-c)(c-a)}
so the sum =
\frac{(x^2(- a^2(b-c)-b^2(c-a) -c^2(a-b)) +x(a^2(b^2-c^2) + b^2(c^2-a^2) + c^2(a^2-b^2)) – (a^2bc(b-c) + b^2ca(c-a) + c^2ab(a^2-b^2)}{(a-b)(b-c)(c-a))}
=
\dfrac{x^2(- a^2(b-c)-b^2(c-a) -c^2(a-b)}{(a-b)(b-c)(c-a)}
numerator
= (x^2(- a^2(b-c)-b^2(c-a) -c^2(a-b))
=
x^2(-a^2(b-c) – b^2c+ ab^2 -ac^2 +bc^2)
=
x^2(-a^2(b-c) – b^2c+ bc^2 -ac^2 +ab^2)
=
x^2(-a^2(b-c) – bc(b-c) + a(b^2-c^2))
=
x^2(-a^2(b-c) – bc(b-c) + a(b+c)(b-c))
=
x^2(b-c)(-a^2-bc+ab+ac)
=
x^2(b-c)(a-b)(c-a)
so
we have ratio = x^2
hence
proved
Aliter (Method 2)
This
can be proved as below
because
this is quadratic this cannot have more than 2 root.
But
x= a, x= b, x= c satisfy the condition.
Hence
this has to be identity.
Proved
Thursday, July 30, 2015
2015/072) show that \tan 3x - \tan x = \dfrac{2 \sin\, x}{cos 3x}
we
have \tan 3x - \tan\, x = \dfrac{\sin 3x}{\cos 3x} - \dfrac{\sin\, x}{\cos\, x}
= \dfrac{\sin 3x \cos\, x - \cos 3x \sin\, x}{\cos 3x \sin\, x}
= \dfrac{\sin 2x}{\cos3x \sin\, x}
= \dfrac{2 \sin\, x \cos\, x}{\cos 3x \sin\, x}
= 2 \dfrac{\sin\, x}{\cos 3x}
= \dfrac{\sin 3x \cos\, x - \cos 3x \sin\, x}{\cos 3x \sin\, x}
= \dfrac{\sin 2x}{\cos3x \sin\, x}
= \dfrac{2 \sin\, x \cos\, x}{\cos 3x \sin\, x}
= 2 \dfrac{\sin\, x}{\cos 3x}
2015/071) Factor y^4-y^2+16
This
can be factored by completing the square. By changing the y^2 term
y^4
-y^2 +16
= y^4 -y^2+8y^2-8y^2 +16
= y^4 +8y^2 +16 -9y^2
= (y^2+4)^2 -(3y)^2
= (y^2-3y+4)(y^2+3y+4)
= y^4 -y^2+8y^2-8y^2 +16
= y^4 +8y^2 +16 -9y^2
= (y^2+4)^2 -(3y)^2
= (y^2-3y+4)(y^2+3y+4)
2015/070) Find the point on the line 2 x + 4 y + 1 = 0 which is closest to the point (-1, -3 )
There
are different methods to solve this problem. I shall use one of them.
Because the point is closest to (-1,-3) the line joining the point and (-1,-3) shall be perpendicular to (2x + 4y + 1) = 0
slope of 2x + 4y + 1 = 0 is \dfrac{- 1}{2}
so slope of perpendicular line is 2
so the equation of line
y = 2x + c
as it passes through (-1,-3)
so -3 = - 2 + c or c = -1
so y = 2x -1
solving this and 2x + 4y + 1 = 0 we get the result
2x + 4 ( 2x-1) + 1 = 0
or 10x - 3 = 0
x = \dfrac{3}{10} and y = \dfrac{- 2}{5}
So the point is (\dfrac{3}{10}, \dfrac{- 2}{5})
Because the point is closest to (-1,-3) the line joining the point and (-1,-3) shall be perpendicular to (2x + 4y + 1) = 0
slope of 2x + 4y + 1 = 0 is \dfrac{- 1}{2}
so slope of perpendicular line is 2
so the equation of line
y = 2x + c
as it passes through (-1,-3)
so -3 = - 2 + c or c = -1
so y = 2x -1
solving this and 2x + 4y + 1 = 0 we get the result
2x + 4 ( 2x-1) + 1 = 0
or 10x - 3 = 0
x = \dfrac{3}{10} and y = \dfrac{- 2}{5}
So the point is (\dfrac{3}{10}, \dfrac{- 2}{5})
Tuesday, July 28, 2015
2015/069) P(x) is unknown and when divided by (x+1)(x-3) the remainder becomes 2x+7
What is the remainder when P(x) is divided by (x-3) ?
Solution
Because P(x) divided by (x+1)(x-3) the remainder becomes 2x+7 so there exists Q(x) such that
Solution
Because P(x) divided by (x+1)(x-3) the remainder becomes 2x+7 so there exists Q(x) such that
P(x)
= Q(x) (x+1)(x-3) + 2x + 7
so remainder when divided by x-3 is using remainder theorem
P(3) = Q(3) (x+1) 0 + 2 * 3 + 7 = 13
so remainder when divided by x-3 is using remainder theorem
P(3) = Q(3) (x+1) 0 + 2 * 3 + 7 = 13
Monday, July 27, 2015
2015/068) find parametric form of Pythagorean triplet for (3,4,5), (5,12,13) \cdots that is difference between hypotenuse and one leg is 1
that
means we need to find (x,y,y+1) where
x^2
+ y^2 = y^2 + 2y + 1
or
x^2 = 2y + 1
now
x has to be odd say 2n + 1
so
x^2 = 4n^2 + 4n + 1 = 2y + 1
or
y = 2n^2 + 2n
so
the sides are ( 2n+ 1, 2n^2+2n, 2n^2+2n+ 1)
by
putting n = 1,2 ,3 we get the sequence
Saturday, July 25, 2015
2015/067) Integrate \dfrac{1}{e^x(1+e^x)}
1st we convert it into partial fraction
\dfrac{1}{e^x} - \dfrac{1}{e^x +1}
= e^{-x} - \dfrac{e^{-x}}{1+ e^{-x}}
integral of e^{-x} is -e^{-x}
and putting 1+e^{-x} = t we get -e^{-x} dx = dt
so integral of \dfrac{e^{-x}}{1+ e^{-x}} = ln | 1 + e^{-x} |
but as 1 + e^{-x} > 1 and hence > 0 we get the integral of given expression
- e^{- x} + ln ( 1+ e^{-x}) + C
\dfrac{1}{e^x} - \dfrac{1}{e^x +1}
= e^{-x} - \dfrac{e^{-x}}{1+ e^{-x}}
integral of e^{-x} is -e^{-x}
and putting 1+e^{-x} = t we get -e^{-x} dx = dt
so integral of \dfrac{e^{-x}}{1+ e^{-x}} = ln | 1 + e^{-x} |
but as 1 + e^{-x} > 1 and hence > 0 we get the integral of given expression
- e^{- x} + ln ( 1+ e^{-x}) + C
2015/066) A line passes through A (1,1) and B (100,1000). How many other points with both coordinates integers are on this line segment between A and B.
One
of the points is A(1,1) and second point B(100,1000) The slope is \dfrac{999}{99} or in lowest form \dfrac{111}{11}. The equation of line is
(y-1)
= \dfrac{111}{11}(x-1)
or
11(y-1) = 111(x-1)
so y-1 = 111t and x-1 = 11t
y
= 111 t + 1 and x = 11 t + 1
for
x and y to be integer both 111 t and 11t have to be integer and hence
t is integer
the 1st
point is for t = 0 and 2nd
point for t = 9
there
are 8 values of t( from 1 to 8) so number of points = 8
2015/065) What is the value of f(14400) from the following case?
1. f(xy)=f(x)+f(y)-1 for any pair of positive integers x and y.
2. f(x)=1 holds for only finitely many x.
3. f(30)=4
Solution
From (1) we find that
f(30)=f(2*15)=f(2)+ f(15)-1
= f(2)+ f(3*5)-1
= f(2) + f(3) + f(5) – 2
With (3) this yields:
f(2)+f(3)+f(5)-2=4
f(2)+2f(3)+f(5)=6 (4)
Lemma (1)
Neither f(2), nor f(3), nor f(5) can be 1.
Proof
That means that infinitely many numbers x have f(x)=1
This is a contradiction with (2).
Combining lemma with [1] tells us that f(2)=f(3)=f(5)=2.
Lemma (2)
f(a^n) = n f(a) – (n-1)
the above can be proved by induction
It follows from (1) that:I have solved the same at https://in.answers.yahoo.com/question/index?qid=20131011072645AAoFbsS
f(14400)=f(144 * 100)
= f( 2^ 4 * 3^ 2 * 2^2 * 5^2)
= f(2^6 * 3^2 * 5^2)
= 6f(2) + 2f(3) + 2f(5)- 9 = 6 * 2 – 5 + 2 * 2 -1 + 2 * 2 – 1 - 2 = 10*2 - 9 = 11
Monday, July 6, 2015
2015/064) If \alpha and \beta are the solutions of the equation a \tan \theta + b \sec \theta = c , then show that \tan (\alpha + \beta)= 2\frac{ac}{a^2-c^2}
b \sec \theta = (c- a \tan \theta)
so b^2 \sec^2 \theta = (c-a \tan \theta)^2
or b^2 ( 1 + \tan ^2 \theta) = c^2 + a^2 \tan ^2 \theta - 2ac \tan \theta
or (a^2-b^2) \tan ^2 \theta - 2ac \tan \theta + (c^2-b^2) = 0
or tan ^2 \theta - \dfrac{2ac}{a^2-b^2} + \dfrac{c^2-b^2}{a^2-b^2} = 0 \cdots(1)
if \alpha and \beta are the solutions of the equation a \tan \theta + b \sec \theta = c
then \tan \alpha and \tan \beta are the solutions of (1)
so tan\, \alpha + \tan\, \beta = \dfrac{2ac}{a^2-b^2}\cdots (2)
tan\, \alpha \cdot \tan\, \beta = \dfrac{c^2-b^2}{a^2-b^2}\cdots (3)
so \tan (\alpha + \beta) = \dfrac{ \tan\,\alpha + \tan\, \beta}{1- \tan\, \alpha \tan\,\beta}
= \dfrac{\frac{2ac}{a^2-b^2}}{1- \frac{c^2-b^2}{a^2-b^2}}
= \dfrac{2ac}{a^2-c^2}
PROVED
so b^2 \sec^2 \theta = (c-a \tan \theta)^2
or b^2 ( 1 + \tan ^2 \theta) = c^2 + a^2 \tan ^2 \theta - 2ac \tan \theta
or (a^2-b^2) \tan ^2 \theta - 2ac \tan \theta + (c^2-b^2) = 0
or tan ^2 \theta - \dfrac{2ac}{a^2-b^2} + \dfrac{c^2-b^2}{a^2-b^2} = 0 \cdots(1)
if \alpha and \beta are the solutions of the equation a \tan \theta + b \sec \theta = c
then \tan \alpha and \tan \beta are the solutions of (1)
so tan\, \alpha + \tan\, \beta = \dfrac{2ac}{a^2-b^2}\cdots (2)
tan\, \alpha \cdot \tan\, \beta = \dfrac{c^2-b^2}{a^2-b^2}\cdots (3)
so \tan (\alpha + \beta) = \dfrac{ \tan\,\alpha + \tan\, \beta}{1- \tan\, \alpha \tan\,\beta}
= \dfrac{\frac{2ac}{a^2-b^2}}{1- \frac{c^2-b^2}{a^2-b^2}}
= \dfrac{2ac}{a^2-c^2}
PROVED
Wednesday, July 1, 2015
2015/063) What are the real roots of x^6 - 6x^5 + 15x^4 - 30x^3 + 15x^2 - 6x + 1 = 0
The equation is very close to (x-1)^6 except
coefficient of x^3 which is -30 x^3 instead of -20 x^3
so equation is
(x-1)^6 - 10x^3 = 0
let \sqrt[3]10 = t
so we get (x-1)^6 - (tx)^3 = 0
x is not zero
so divide by x^3
(\dfrac{(x-1)^2}{x})^6 = t
OR (x - 1)^2 - \sqrt[3]{10}x = 0
ie (x^2 - (2+ \sqrt[3]{10})x +1 = 0
ie x= \dfrac{1}{2}(2+\sqrt[3]{10})\pm\sqrt{4+4\sqrt[3]{10}+\sqrt[3]{100}-4}
or x= \dfrac{1}{2}(2+\sqrt[3]{10})\pm\sqrt{4\sqrt[3]{10}+\sqrt[3]{100}}
so equation is
(x-1)^6 - 10x^3 = 0
let \sqrt[3]10 = t
so we get (x-1)^6 - (tx)^3 = 0
x is not zero
so divide by x^3
(\dfrac{(x-1)^2}{x})^6 = t
OR (x - 1)^2 - \sqrt[3]{10}x = 0
ie (x^2 - (2+ \sqrt[3]{10})x +1 = 0
ie x= \dfrac{1}{2}(2+\sqrt[3]{10})\pm\sqrt{4+4\sqrt[3]{10}+\sqrt[3]{100}-4}
or x= \dfrac{1}{2}(2+\sqrt[3]{10})\pm\sqrt{4\sqrt[3]{10}+\sqrt[3]{100}}
Friday, June 26, 2015
2015/062) A problem in AP
There are 2 sets of numbers
each consisting of 3 terms in A.P & sum of each set is 15. The
common difference of the 1^{st} set is greater than the common
difference of the 2^{nd} set by 1 and the ratio of product of the 1^{st}
set is to the product of 2^{nd} set is 7 to 8.Find the numbers.
Solution
As sum of 3 terms is 15 so middle term is 5
let the common difference in 1^{st} set be a, so common difference in 2^{nd} set is (a-1)
then numbers in 1st set are 5-a, 5, 5+ a and in 2nd set are the numbers are 6-a, 5, 4+ a
now as per given condition \dfrac{(5-a)5(5+a)}{((6-a) 5 (4+a))} = \dfrac{7}{8}
or 8(25-a^2)= 7(6-a)(4+a) = 7(24+ 2a - a^2)
or 200- 8a^2 = 168 + 14a - 7a^2 or a^2 + 14 a - 32 = 0
(a-2)(a+16) = 0
a= 2 gives a- 1 = 1 gives 1st series = 3,5,7 and second series = 4,5,6
a = - 16 gives a- 1= - 17 the 1st series = 21,5, -11 and second series = 22,5, - 12.
refer to http://in.answers.yahoo.com/question/index;_ylt=Ar2kcwS_d26mHg5f2W.h9F.RHQx.;_ylv=3?qid=20130222042246AAW7rSk
Solution
As sum of 3 terms is 15 so middle term is 5
let the common difference in 1^{st} set be a, so common difference in 2^{nd} set is (a-1)
then numbers in 1st set are 5-a, 5, 5+ a and in 2nd set are the numbers are 6-a, 5, 4+ a
now as per given condition \dfrac{(5-a)5(5+a)}{((6-a) 5 (4+a))} = \dfrac{7}{8}
or 8(25-a^2)= 7(6-a)(4+a) = 7(24+ 2a - a^2)
or 200- 8a^2 = 168 + 14a - 7a^2 or a^2 + 14 a - 32 = 0
(a-2)(a+16) = 0
a= 2 gives a- 1 = 1 gives 1st series = 3,5,7 and second series = 4,5,6
a = - 16 gives a- 1= - 17 the 1st series = 21,5, -11 and second series = 22,5, - 12.
refer to http://in.answers.yahoo.com/question/index;_ylt=Ar2kcwS_d26mHg5f2W.h9F.RHQx.;_ylv=3?qid=20130222042246AAW7rSk
Thursday, June 25, 2015
2015/061) Simplify ((-1)+\frac{i\sqrt{2}}{3})^2 + ((-1)-\frac{i\sqrt{2}}{3})^2
we
know
(a+b)^2 + (a-b)^2 = 2 (a^2+b^2)
gives ((-1)+\frac{i\sqrt{2}}{3})^2 + ((-1)-\frac{i\sqrt{2}}{3})^2
=2((-1)^2+(\frac{i\sqrt{2}}{3})^2)
= 2 ( 1- \frac{2}{9}) = \frac{14}{9}
Subscribe to:
Posts (Atom)